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~ ‘Abstract R ) }~

o g -

This report considers the propagation of electromagnetic waves in a
random medium. When the randomness is caused by'the presence”of discreté,

identical scattering obgects embedded in a homogeneou« medlum, the problem

e - <oy

is formulated in terms of multiply scattered fleldso This type of formula-
tion was. flrst given in 1945 by Foldy, who introduced the concept of -the

conflgurational average, - Since then much work has been done. on the subJect

| wi th valuable contributions from Lax, Twersk,, Waterman and Truell However,

the treatments have been generally restricted to scalar waves and scatterers .

o - v { e

. of small size., The present investlgatlon extends the work to vector

W

electromagnetlc waves and scatterers of arbitrary siaeo'
The problem has been formulated using a self—consiqtent approach,.
This approach. leads to equations governing the expeqtation value of- the
total flelq “and ercitlng'freld which are quite general and can be used for
scatterers of“anv‘erape or size, They are written in terms ofvtheuscattering'
prorerties of a single,”isolated_scatterera . |
*;The problem.of scatteriug by,spheres‘ﬁas eeeu'considerea in detail.

The rigorous Mie theorv of‘scattering by a sphere Has been used, In tﬁe-

Born approximation, which is quite adequate in the case of weakly ranuom

. media, the results show that the distribation of’ scatterers is equivalent S

Jtora modified homogeneous medium where theArefractlve index is a functlon'

N

of the size, density and electromagnetic properties of the spheres° When'

v

multiple scattering effects are. taken into aocount, it is found that the i

modified medium can sustain more than one mode. A.dispersiou'relatlon has

i

v

o

been obtained which governs the refractive indices corresponding to tﬁese

s



[
'

modes. For normal incidence; each of these modes is linearly polarized’

with a polarization similar to that of the incident wave.

The results'obtainéd in this investigation reduce to those obtained byA ’

o

ofhef authers when the special case of small épheres is considered, For
inéﬁance, the Born approximation results ieéd toAtpe well~known refractive
ipdex of the Rayléigh‘scattering theory. The basic techniques‘develbped\

in this {nvésfigation"can'be used ‘for furtﬁér studies of scattering by

’ spheres of arbitrary size and properties.'
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1. Introduction

A randoﬁ meditnm cannbe aefined és a médium some properties of wh;ch
are random functions of position‘ov‘%ime or both. Such a definition ob=.
viously includes almost all ﬁhysical Tedia due to its genérality, 'Hdwéyerﬁ
'since "l "acroseopic,quantitiééigan ge mééspred experimentally in mosf
cases; we usually aSsumeifhét the medium cén be tfeated as & c&nﬁipuumo
1Such aﬁ‘asaumption-requires=a‘microscopio exémination for«itéuJuégificaw‘
tibﬁg The contlnuum theory has béen succe&sful for a. iarge class of oo
"‘physical problemq and,- due to its s1mp1¢c*ty, it use ié very desmrabié
as long as it is valid -There is however, also a large class of problems

that cannot be descr*bed by a simple continuum. For example, the randam*
ness may be on aumacroscépic scale and accessible to measurements., We - -
shall, th.refore, algernafely define a random medium as a medium of which

o

randomness 'is a salient feature, Examples of suck randomness are the-
fluctuations in density‘in the t%ﬂposﬁhepe and-the ionosplere due to.
turbulence or other pertﬁrbing agencies; the airpléne strucﬁure under’

C “

random stresses excited by Jet noise, and otner 81m11ar phensmenao

The study of the propagatioﬁ of electromagnetic waves in vandom media:\

Jis interestlng both tneoretically and from the experlmental p01nt of viewn‘
ﬂExperimental studies have been greatly stimulated by che fact—thaf electro-
mugnetic waves can be used to study the nedium itself° Whnn the propertles

‘of a medium do not depart appreciably from the averageJVaLue, tne medium

~

N . N ~

i“ said to be weakly fandom. Ia such caseS'a perturbationJmechnique,ﬁsgcﬁf

‘ as‘the well known ‘Born solution, catl ysually b j in fheoretiﬂa1 V,’
. w N N \ ‘




v

L
o o " R
llihvestigations. If, however, the properties of the medium are alloweq
- ‘U,! ! - s N [ . . ‘ , "
.‘1 W

'to change appreciably in'some manner, the perturbation technique is largely

useieSs and "some new'approach must be used. The present investigation

‘ :goes"from the weakly random to the strongly random media and hence both
P . ' A - °

~ the perturbation method and the more exict formulation are used.,

i N o

3

This thesis is concerned with the pripagation of electromagnetic waves

in a continuum in whiéh are embedded randoﬁly positioned, identical scat-

terers with similar orientation. The value Of the electric field for

" a given éonfiguration)of scatterefs‘is,not usually of interest, We. are
" ‘more interested in the statistical expectation of the field for all the.
4\ i ‘ S ,
‘configurations of the ensemble. The positions of these scatterers are

J

- governed by the joint probability density functio".ﬁ° It is assumed that
the gcattering properties‘Of‘each individual scattéreg are knowh? For a -

given cornfiguration of scatterers, the total field at a point is given,

E}

o

and the fields scattered from all the scat}érérsn Thérefore the total field

‘depends upon the knowledge of the exciting fidlds'at f@e scatterers. A

similar self-consistent approach can be used to write- &uations for the

exciting fields. In principle, these equations are to be'sglyed"to get

v
\

the totg; field for a particular configuration, The enéemble average. of

W

the total field would then give the expectatién value of the total field,
'Unfortunately, these equations' are extremely complicated iﬁ,practicg,and
it is impossible to solve. them directly. We are; théreforé, forced to

resort to an alternate route, ;
» A R ' \\ 7 ‘\ o . ot N
The alternate route is to average the equations as they stand. + In

so doing, we obtain a éystém of eduatidnse .The first equation involves

v

according to the self-consistent approach;»by‘the sﬁm of the incident field

&

W

S

g S
*

- P
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3

the averaée total field andfthevfirst partiai average 6@ the exciting fieidv‘
The first par%gal average of'tﬁe exciting field‘on a scattérer‘is the
average over all configurations of all other scatterérs wi&hﬁ$h&sﬁ§arhicu1af
scat%érer‘held fizxed. . The seq@ng equétion involves the first'partigl
average of the exciting/field and the second partial average of the ex-
citing field, which is the average taken with two scatterers held fixed,
'Thglthird equation involves the second partial average and the thjr& partial
//Gﬁgragé.and so on. Thus, we get é hierafchy of eqd:fions for the paitial‘
' éveraées of tle éxéitﬁng field, each'ééuation involving the partiél ;verage
of one higher order. Since this chain of equaiions is nof closed it is
‘Jistill iﬁbossible to solve, unlesgAthe chainwcan be broken by introducing
valid approximatiopgl Theée.Ap§¥oximafipnsiéﬁd criteria of ﬁheiruvalidity
are discusgedﬁby Fgfdy [1945] Lax [1951]} and Waterman and Truell [1961].

he exciting field on a scatterer by the total field

it

Here we appfoximate t
there when that‘scatterer is removed. It should be noted that this approxi-
mation ié stiil much bettér than the Singie scattering spproximation.
Usiné“thig approximation, the average,gxéiting field eduatiop ism@doBed
'and:bmnma§§ genuine integral equat‘im;w‘h:i.c;y9 if solved, determines fhe
‘w ‘total field. The pﬁeseht investigatioh generaliZeéxpast wor? in tWo direc~
tions!, the finite size scatterers and %he vector natq?e of the fiéid°
‘iThe formuiation‘is based on tﬁe work of Wafermaﬂ and Truell [196i].
] Th;‘special case of gpherical scatters is néxf considered in‘géféiio
" We consider a ﬁeréectl& r;ndom distribution so that the jéint probabil}ty
distribution‘is eq;al to the prbdgctlof the individual probabilitieso~ J

)

Furthermore, we consider a constant density of, say, 0 scatterers,



" per unit volume confined to.half-space. The exact “solution of scéttering'

of a linearly polarized wave by a~§iné1e Sphere was obtainéd by Mie [1908].

This 1s used in first obtainingfexpressions"fof total average field in the

Born approximation. ‘This approximation is essentially the first order

" iteration of fhe exciting field equation in which all scatterers are assumed

' functigns. The resulté indicate that the polarization ‘of the incident

to be excited by the incident field alone. Physically this would be- ex- .

pected in cases of sparse concenfration when the average separation of

.scatterers is 1arge‘compared to their size and the wavelength. Techniques

are developed to carry out integrations involving spherical vector.wave

field.isamaintained and‘thatg/for cases where Born approximation.would

be expected to hold, the medium with scatterers behaves like an equivalent

2a

: homogeﬁéous~ﬁgdiUm with a modified propagation cqnétantaw‘

<

i In strongly random media “the Born approximatidn is not valid and -

\)

effects of mu1t1p1e scatterlng have to be’ taken 1nto account Fdr this = . )

'purpose the integral equation goverv1ng the e301t1ng fleld is con31dered“

e

The geometry\of the problem suggests that the excltlng figld will be-

11pe§rly‘polarized~hav;ng polarization similar to thatof the 1ncident'

field, We have made use of the “two-exterior" formalism.of Twersky [1962a)
'V e , LoT , Y.

. to obtain a q;spersion:ielationfwhich'determines the réfractive.index of

R . N - ) . .
g . P . . ) '

\‘phg eqhiyalen%‘medium,u Within}ﬁhe,framewdrk‘qf thé”apprdx}pations mentioned .

earlier, this:relation is valid for spheres of arbitrary size and electro-

oy

magnetié prdpenties (since all order§ of,muitipolés in the Mie series have

I

been taken into @ccount) and for al1 orders of scattering. .. .
/ ' .
The 1ayout of the thesig is as follows‘_ A bnlef historical survey

2

of scatter*ng probLems and multiple scattering uechniques is gmven 1n \

y‘ .
b

§

- e
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" Chapter 2. The problem is formuiatéd i Chapter 3 and equations governing

the quantities of interest are derived. The apprpximatiohs involng are”

oo

h glsé discuésed. Chapter 4‘considers the Born approximation,5 Thé tctaiu

o)

field is dérived by integrating the Mie series. In order nét to digress
from the main theme, ‘the mathematical tec@hidues developed for use in this-

. integration are‘treated separately in aqjappendix. The problem of multiple

~

"scaptering is next.considered in Chaptef‘é. A dispersion relation governing
'thé'refractiQe index of the equivalent medium is’defiﬁéd. ‘Thefnew feature

-

1

ig?fhat becausé'of‘épatial dispéréive“effect many modes can propagate in

4 .

/”fhe equivaleﬁt medium. The ex%ipction theorem is shown to hold true.

” : i ' o L - - . .
Chapter 6 deals with special cases. The e¢quivalence of the Born approxi-

mation and the multiple scattering approach are. shown for the case of

. mall, perfectly conducting ‘spheres of gbafée concentration. :These limiting

f?éﬁﬁlts agree with those derived by'other authors. The closing Chépfer 7

discﬁsses the conclusions arrived at from this research and indicates the

dir%cti&hs in which this work is to be exfeﬁded in the future.

v -

o

v v s

T



| modern approach to the subject The first work on“distfibutions of/distinct

as a form of electromégnetic radiation and laid the foundations for ﬁhe 5 -

,obgects wag the development of the Lorentz~Lorenz formula in 1881 for the

"refractive index of most substancesﬂ,plasmas exceptedleorn hnd-WolfblLQSQ}ﬁ

© - of scatterlng by a sphere was solved by Gustav Mle in 1908 in terms of

’
b
\
)
S
A N
B

- . A oo ]
L : . -2. Historical Survey . S /

[VIRS

R » T . , _ <
; v . : . /
- The problem of wave propagation in a medium containing a distribution/
. - /
- . R . 7 ’/' . ",
of obstacles has been studied extensively due to its practical importance:

The earliest.-studies were concerned with light and acoustic waves. Max—

oy - N
A h

. 5 . o o o
well's work in the niheteenth century led to the identification of light

" . . . S

v 5 G

Thie"wes followed by Lord Rayleigh's clossiqal work in 1899 on scatteging
. o )
by random distributlons Whlch explalned “he oolor of the sky Soattering

by 51ngle ob1ects was also studled extensively following "the development .

of, coordinate sys»ems in which ‘the wave equatlon 1s/7eparab1e, The problem ’
33 - . u,

s ),

spherical Vector wave functions° Extensive comﬁutatioﬂ% for scattering

7

v

by single’obJectslhave recentlbieen carried out at The Uﬁiversi@y of .-

—

Miohigan using“c‘zoinputeré° A comprehensive. review of_the,subject;,with

“nearly 300 references)_, has been given by Twerek& ['1_960'j,. SR e, | L i
In recent yeaos, gstatistical methods have come to play’an 1mportent J .
part in the stud; of oropagatlon in,rand’om rnedl:,ealo The sointi«llation of T . @
radio-signals receﬁved from PadIO,St;rS and artlflclal earth satellites l ) bm;
N ) .
'has added-stimulus to this studjvv The statis&ical proﬁerties,of these ‘ fid ' ,i —

‘{\) N v \

. signals as effected by the fluctuaéions of density and refractive index .

L

v

-

of the medium have been studied by numerous workers such as Booker [1956},="

. Y s ' N ! .
“ " u, u ‘} . .
- * s N . " . v W
., " i . . o . ol ~ "
. S Y . P . N . '
,
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’ Chernov [1960}, Keller [1962] and Yeh [1962] to mention but a few. The

extended by Lax {1951, 1952]° to include anisotropic scatterers and in-

same problem can he treated from the point of v1ew of a distribution of I ' s
discrete’scatterers in a homogeneous znedium° “Reggular, peribdic distribu-x

tions have been studied as boundary value problemsuusing Fourier analysis,
This is not feasible for random distzibutions.

an

'Foldy'e work in 1945.was the;firsthsystematic treatment of-multiple

=

scattering of waves by a random distribution of point isotropic scattérers,

He used the self-consistent approach to obtain expre531ons for the expecta-

tion values of the coherent and incoherent fields° His work was later

elastic Scéttering. Lax also considered the case when the "scatterers are

. fy = M " . ' ‘
partial y or, completely ordereo, One of the main difficulties in studying

"

T_multi-scatterer probiems 11es in the estimation of the exciting field on

a‘scatterer whioh is part of a configuration of"scetterers° Various

-approximations made in this connection are'discussed bp‘fOIdy and Lax.

a
"

In .a comprehensiVe paper on.muitipie‘ecatterings Waterman“end,TruelliIIQGL]:

~ have derived a’ criterion for the validity of these approximations, Their

, 0 .
formulation of the probic, for scalar waves forms . the basis of the formulation

Afor vector waves. used in the present work° Multiple scattering by $parseJ

v N B3

. concentrations of small scatterers has also been treated by Twersky [1962a,b c]

and scattered field satisfy different wave equations. Some of his results .

have“been.derived as a spécial case of the“present work, o, =

He has introduced the ' two-exterior formalism in which’ the exciting field

10,’(

BV
\t H D
o It

© Some experimental models have been built to simulate random distributions

Vi

. ” \‘~ <‘."/
of spheres of vawious kindso Measurements made,by Twersky [1962] on simu- o

‘lated rare:gas’ agree with his computations° ‘ | o )
. ) o . o W N . u, v ' ,‘“ B , . L« .



3. ‘Formulation of the Froblem .

i

3.1 The Self—éonsistent;Field

Let us consxder a collectlon of m identical scatteners of arbltrary ;

H

~

. size, shape and scattering prdperties, distributed randomly in the semi-

infiniteﬁspepe‘z 2_0.1 Let. the various configurations of scatterers be’

g ‘v{'ru;

"

governed by the probability demsity distribution p{r , ¥, ..s;r ). Here

==

‘9(31?'52’°ﬁ°;£m? v, dvzaoedtm‘is the probability of finding the first

~gcatterer in;the'volune dv‘1 centered at rl,’the second scatterer in drz
S AP .Y - , oL

=N

-2

tion is specified by the scatterer positions alone.” We- shdil place two

r . Y -
o . . : ] .
(3 7 .

" .- " 5

centered at r, and S0 on. Since all scatterers are identical, -a configura-

e R

i,réstrictions'bn this distribution:

(i) ‘The,scatterers are confined’ to the right half space. Theréfore,

I

il

p(r1,~ 2,.,“,r ) 0 whenever/sny position vector*zj lies in the”

space z < o,
(11)4 Interpenetration of.scatterers is excluded; :Therefore;,'
p(rl? zzyooo,r ) = 0 whenever any “two position vectors rd, T

are such-that the scatterersteentered at r and rl will overlap° ‘ .

2
«

”In addition, only elastic scatterlng W111 be considered - It is assumed TN

v

’ that the scatterers are 1n no’ waJ effected by the inc1dent field and that . fw

the mot"on of scatterers, if any, is too slow to be of significance, , E
Let an electromagnetic field E (r,t) be incident trom the 1eft. i ‘ o ‘3EE
In the formulation it is not necessary to have’ this restricticn. Actually e

scatterers can be anywhereb' To be specific we shall assume they are’ restricted

# <

to the“semisinfinite halfsspace° S : B ot

[V ' o k! N
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‘ ﬁe shall consider only the forced.oseilla;ion case‘with time ;ependence
-iwto 'For simp1i01ty we shall usually eupprese the time dependenceo'

Our object is to flnd tlie, total fleld at a point r. For the'configuratipn

S Eys Igyece X, 5 WE shall denote the total field at r b; E(rm g3y rz,oouyrlﬁe
Clearly, if r lies in zfilo , it may lie outside all scatterers (as at P
in,Fiéure 1) or it may lie W1gyiA some seatterer at Sj (as at P")o However, .

if r lies in z < 0 (as at P"), it must lie outside all scatterers>, e

shall, therefore, considev the two cases separétely°

(720N

3.11 Point of Observatlon Inside the Scatterlng Medium

Let E (r, Ej; Ty Eéyooo,gm) denote the scatteredlfleld at r from the
scatterer at Ej ﬁerze'configuration with thé first scatterer at Ty the. 8

. second at r,, etc. This is governéd by the exciting field at the scatterer

'at r,, denoted by"EE(sj:~£1, Ez,o,o,Em) and by the SCatteping propertieé

j?

w; of the scatterertwhich we shall denote by the operator T(g,_zj)al This

. eperétefgeperetes dpltheiexciting'field at tﬂe scatterer at £j te give
the scattered field at r. Welthus have

u‘l
.-

- '
"E(r, rir, ,oﬂ:xgm) = T(xr, r ) E (r seees Xy ) FR

RS L. Iy Iz,

Rt} : ! - ‘ R
2For convenience, we ehall not. cousider the case when r lies in z < 0 but .

so close to ‘the. boundary that 1t may be w1thin some scatterer which has its

'

center within z > > 0o We shall, therefore, restrict P(x,y,zymto lie outside

the slab ‘va \ z < a Wb=re 2a is the effective dimension of the scattererso

- : .
.- < . - - . c . . ]
- g W NNy N G N En W
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7

In this formulatioh wn'shall assume thatithe SCAttering prbperties~of a
single scatterer when isolated are known so that T(r,“rj) is known. We

‘shall denote the total £fidld at r, when r is in51de the scatterer at rJ

n

3 b? T,(g, ?,) E (r,.‘ l' EPYRERTE M ) and shall assume; likewise, that
TI(E, £j) the 1nterior\scatter1ng operator is know:i° We shall further
take T(r, r Xy ) =0 whenever r is 1n51de the scatterer at z and TI(r,.rf)E 0

It ) - \
whenever r is outside the scatterer at rj, The total field at r for a

a

.

flxeﬂ conflguratlon rl, r‘w”.‘,rm of scatterers ie glven by the sum of

the incident fleld E (r) and the scattered fields. xrom a11 m scatterers

= i

\
‘ Ty m g ‘

o . r'v 000 - o z ’ . s 0o
E@ixy, Zgpeenr) = E@ 4 o T(, 1) B (rys Iy, IgpeeesZy)

4 -

«when r is outside all scatteﬁerso 'When ¥ is inside the’scatterer at

| | C. ) > .

. ’ ‘ |
‘gﬁ,‘the tota;,fielq is g}ven‘Py | ) , , . )

i ) ) "ry 1. _ E ) ) ) . ' o
TgreenX) = TG ) EVCQryszy, Tpeeer)

1
\u
These two eqqatibns can be combined 1nto one by the follow1ng device u%ed
by Waterman and Trueil\[lQQ}] ~Let us define the symbol a(r¢ r ) as follows~

'
Y
[

‘\
It - s
L .~

i o it
¥ s i
o o when r.is inside the scatterer at I

A
e D 1 wheﬂ r is outside ‘the scatterer at r, :

n l"‘ o L ) ‘,; ‘ A .
B . Vi

ﬂe total field as .

ﬁetng thie symbol we can wrlte t
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e A m . g om B .
E(r: r), Ipyeeer) = [JT olz)IE @) + 2 T,r) BN e xy, £y .0,00]
. ' k=1 j=1 . )

m Y . .

S | B o
= - . . .
o [1-at, 2l @, ) By xy, Zgseoerr )]

(L 0

=

For a giveﬁ type' of écatterc_ei's? the total field canmot l;e evaluated for
an arbitréry configuration. Thérefore_, wé p;'oceéd to take the ense;;lblen
average oi tﬂe equatio’n g*ove'rnin’;‘g‘ the total field. The statistical' ex-
pectation'v'a‘luei of the. total Tield (hence;fo'x'th to be termed the‘average

W

total field) is defined by

<E(x)»> = fdvl/ féVZ fdv“m Py, Tgyeeerr) E(r: 1y, rp, roesX )

-

Each ihtegrationJ’is carried out over the whole volume gccessi’ble to the

scatterers. -We get, from equation (1) , o o .

<E(x)> = f(;;-rl fdvz P ;‘o"fdvm p(x,, 22,coo,£m)[ﬂla(}:) £k) E ¢o)]

3 v

g . | l m .m - g .
" e Z M N
+ fdvl fdvz 0o fdvm p(§-¥7°°°£m)[11j1%(7€’ sk)][jél T(£>£J)§ (*1:3 egl,“o,}_'m).]

W

v
“

m , ,
- dvy J av, J v 3(31«“3:,,,)[1{_‘13{} a(.r:,f.k)},T (X, 2, JE @y oy 00020 ]

“ , - R [
5

(2).



va R ,L?‘
v oV S

N ' g 13 .

. There are three terms on the right of (2), and v\(ve shall simplify these.

terns one‘by one. In the first term, _ILJi(E) is independent of scatterer ’ a

"

- positions and, therefore, gan'be taken out of the Qiniiegration"s;' Also, ‘ J

it has been shown by Waterman and Truell [1961] that, due to. the exclusion

of interpenetration, we can write

%

‘ ) L n ‘ “ |
p(rl’ ‘rzj ° 0 ujr ) WQ(rJ E ) = p(_x_‘l, 22, ) o,f‘m)[l "‘ G E {-1- u(z’ Ek)} ]
k=1 k=1 )

o

3) -

- Therefore, the first term becomes

El,(ﬁ) fdv1 fdv2 aoe ufdvl-n p(nx‘fl, Tg .,“,_z:m‘) (1 -2 {1 ~ a(r, Ek)}]
. . N kml '

Now the joint probability density can be written as
M .y " ’ )
L ¢

IP.(_I_’; M.,dvm]

) ' . | « ' :' - '
(g5 oo °’£m) dv, dvy; .. pdve = [p(_g'_k) dvkj[pcfl-’f?l" . °"£m:£k) dv, 'dvz
I ' !
<| R - ‘x N

", 13 . , . ' R PR
where p(r _rz,”,,r' I ) is the conditionalu probability of finding scatterers

Pl
]

at rl, rz,.,,,,rm' , given a scatterer at r The ppin{e is used to indicate -

k
that rk is excluded from r | LW ou,rma The first term, therefore, reduces
to
§ (E;)J fdvl fdvzll ° 00 fdvm p(_l_‘l, };23 00 o,Em) . )

v

- -E(r)z fdv p(r){l q,(rr)} fé.iv fdv M,fdv p(rl, rz,“o,r :r,'l;)
. k-.l .

- Ei(g)'[l - z fdv p(r ){1 alr, -{k)‘} J |
) k-l '



" 1%

'

Here we have utilizeﬂ the fact that'the joint probability density and

'

the conditional pfobabiliﬁ§ density are normalized to un@ty\aﬁd, iheféfore,

J‘évl dev27éyc j'avm P(ry, TpyooosX ) =1

?

. “ r’ \ '
Aand fdvl .fdvz devm up(gl, -1-"2“"°°°’£m2 £k) =1

> '\" ~ 1Y
& o %

'Now the factor [l-a(g,ﬁk)] in the remaining integral merely restricts the = Eg
domain of integration tq fhat,region\where E\liés inside the scatterer. -
at'ﬁk" Also since all scatterers are identical, thie summation can be : 55

N

replaced by m times one integrai. The single‘scatterer probability is
given by

PGy

(5] mv

’p(_‘r_jk) =

Q

’

where p({k) is the number density of scatterers as a functioﬁ of positiono

o

g

8o the first term of (2) has the final form

. plm) ¢ ) E
Fob-n fo, =51 2B n- for pen]

9

A
!

where |£ ~'£’| LS a'indicétes'ﬁhat‘the doméin of integration iswspch-that
x lies ‘inside the scatterer centered at rt,
We now consider the second term of equation (2),; Using (3) we have

J

<
<



i J vy J dvzm,J: dv pQ),xo,eee,2) TE,r) EN(r e £y, ZpyeeesZy) ©

PN
“

aflqooo,r )]

fdv fdv ,Mfdv p(rl,rz,ui“r ) Z {l—q(r,r )}][ T(r r )E (r
G le=d ‘

0

=3

Z) fdv p(r ) fdv o.,.,fdv p(r. ,,,,.,,r E I,“)T(r@ g,,@?\(;@ﬂg»,‘,”,f‘)\
R - e M A

I

m m ' ' '
-z Z fdv fdv.,”fdv p(rl,r,.,”,r M1~ a(rr);'l(rr)E (r rl,”,,r)
k=1 j=1 E

- $

Now, in the first part,
o T
fdv ,'fd\} fr ) T )'i‘(r r ";I;E(r ir r ) = ‘;15:'
. loob m p ""l"ooc,“‘m“"‘.j .» Sl el Raend '—‘J )'j'lffocy""m o= <’

- w. bon

where /Er\rj“ v B> is the tirst parti ul average of thn e:x‘citixﬁg -f,ielé on
the scatierer at rj, averaged with this 8 @ nere“ held fixed, Ag 4*n since ‘
the scatterers are all Jdentical, all terms in the summafion are equal

and the sum is equal to m times the single ‘integral. Puttiﬁh;&“

"p(}:j) = the first part of the above expression becomes., -
- - R r LA g }
‘ ; v s N /.
& e ‘ v
fdv,fp(r') Tr,r') <E (1's r'0>
S - o e v,-; oty L o -
: lz=x'1>a ;o R S
Lo C PR Y N T ‘ TR
D)

where the reglonsof integration is limited by -tho dondition that T(¥,r') =

whenever r is inside the scatterer at'r', Sox! can take only those, positions
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in which r is outside the scatterer at"g', The second part of the ex-
pression has m2 terms due to the double summation,“ Of these m2 terms,
m terms involve 1nregrandb of the type [1*’0,(1“,1" )]T(r,r )E (r ’rl,.,“,r ), ’

and the remaining (m -m) terms have integrands of the t,pe

[J,W,a(_g‘,zk) Tz, r )E (}:J :3_"1, coe,I ) With § 4 K.  The first type can be

J
. 4 ‘" ’
treated as follows: ) . . gj

&

Ladagia

f fdv ,.Mfdv p(rl,rz,,..,,r Ni~ale,r )]T(r r )E (r ESPRTEYY )

t

I

- em—
[t ]

r 1 ] 9‘ ) i‘E ‘
g dv‘j p(_gj)[l o,(f_,_x:j)] f’dV1°°-"~[dep(£1’°°°’£m°£j)T(£’£ )E (_gjagl,ooo,gm)

i92

' J ' 7 “E ]
fdvj p(};J) [1 a(};,gj‘)] T(g,_l;j) »<§&_ (33.@ -"-'j)>

i

it
=)
~

L

since, when r is inside the, scatterer at »I-:j’ T<£:."_'J-) = 0 and when r is:

outside the scatterer at r [1-9,(5,53)] = 0, For the (m2 - m) terms of

J’
the second type we write the joint probability density.as below:

T

) p(r TERRETE I:J, "'r-k)

p;(flﬁ “1“2’“6‘9}-‘-111) = p(rj) p(r : rj

~K
e em%;,\ded from rl, °H,rme Then these (m ~ m) terms become . §

where the two primes in the 1ast factor indi’w*ate that rJ and r  are to v

\1
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fdv1 fdvzu.,‘fd.vm‘ p(—x-'1’£2’°“°’£m)[1-a(£’-£k) ]T(z,gj)g (_1_"3. EIPRERYS SV LS

vy
"

fdv p(r ). fdv p(r .r Mi-alr,r )] fdv °.,.,fdv Lp(zlj,‘,.,‘,,r l".. r) -

i

T(r,zy) B (rgixy;een,r)]

I¥

S avy P Jov ptyzp el Tz <T@y x>

<E.
= fav, vy Jav, @) TEr) B g 5
|_1_‘“EJ-| >a Ir-r | <a ‘ ‘
[rJ -kl >2a

where lgni_‘JI >u indicates that r should always be outside the scatterer

at x, (otherwigse T(r,r.) =-0), Ir-r | < a indicates that r must be inside

=3"

the scatterer at I (othcrw1se [1—o,(r r )] O) and |r -r ] >2a indicates

that the scatterer at r, must be outside the scatterer at r ‘(otherwise

| . pE) pliz)
p(ﬁk::}:j) = 0)., Now ?(53') -,—.- m and p(x °r.j) ..4——-—-'51:-—:[*»— . Using

theseielations and .the fact' that the scatterers are identical, the con~- '

tribution of the (mzwm) terms becomes

‘

plx,). p(}; r.)
(m. -m) ,f dv -—--—-—~, — f dv, k il Sk’ M T(r,r ) <E (r j’ r )>
|;x_'-£‘jl>a |r-__“k|< a - |
|, [>2a o | o

= f dv""p(r') ‘ f dv" p(r". r') T(x, r') <E (r“ f x>

| r~r*|>a \ru—r"|< a
. f=x">2a



fo

on the scatterer at r' ‘taken with the scatterers at r* and r" ‘held fixed.

’Combining the contributions of the two parts,‘the second term of equation (2)

_manner .as follows:

‘“Hera the dcmain of integration is 1imited by the fact that both [1-a(r,rk)]

Bl

whern‘<E (r" r?, £"I> is - the second partxal ‘average of "the exc1ting field

can be written as

f et pey T €@t
|z-r'>a |

" L - - .
¢, . ’A

<)

.J. d&'_p(r') J~ dv"'p(r"- r') T(r, ’) <E (r'°r ' ®> (Zb)
l '!>a . |r—r I<a

—

K : [r'-r |>2a

o

/

The»ghird term of equatior (2) can be simplified in a stfaight@orward'

[

|

< )

\
[

<

=

- , 'r¢ K R { R " m A,- ‘ ‘ ¥ - : h
Jidvlj‘dvzﬂgaJ dvm'p(gl,gz,.ee,gﬁ)[ ;?{l~a(£%£k)}Tf(£ )EE(r .‘I,rz,...,r )]
ST e 'S |

9

m- - Cog TR - ‘ : - : .
; e Y lealr - . I Eo . =
}fl ﬁi"k JERIE °1(§1’£k)}f d‘fl“,“f APy o es P 2T @D JE @y, Bpy e 2y).

.om L .o - . b
L ] Sty ‘ -
= & s PSR I X .
el fdvk p(,tk? {1 a(z,gk?} T (z,r,) <§L (@ : -f-'k)? .
N} " , n - . ., L, ) g
= Jadv p(r') T (r,r 5 <E (r" r'x> ; " 4 S 3(20)
Irur9|<a i ., ‘ . ] . . . \ W A . \‘ r ] ) .

S\

o
and T<(£,r ) ana Z0ro- ‘when r'is outside the scatterer at.x

D

k 'WQ‘have again

©



]

per)

used p({#) = and replaced the suﬁ\by m timeé'th% integral since

the scatterers are identical.

Putting the three expressions (2a), (2b) and (2c) together we get

" the required expression for the average po%al field

§§{£i$ ‘= E (r) {1~ jt dv? p(r')] + j’ dv p(r') T(r, ’) <E (r >

4 I.}E.IE ' : lr- ‘|>a a s

.

1. ~ W : RO

J~ dv? p(r‘) J' dv" p(r"-r') T(r r’) <E (r srt r"I>
rxPsa (x-x'j<a B
; ‘E'_Enl>2a k'

ot f qvt p(st) TI(&:’E') <§E‘£':£v)> . ’ . ‘ (4)

A,V' toe |£_zil<a

It may pe noted in passing that if there are no scattérers 1n the

matrix medlum then (4) reduces to

s

1%

. as woul&‘be expectedL On the other hand ‘if the number dengity ot scatterers

:1s so 1arge that the entire rlght half space is filled with scatterers,

. equation (4) shows that the incident tield is extingulshed This is

N K
o 4

because in this case the scatterer density is constant and we have o

- " - . v
. . "
v o - N |

N

bl

‘r”r'l(a I ' £~£'l§a Y, s

NS f dv’ p(r') = Py f dv' = v o et e "

{g(ﬁ» - -E—i (E) ,. n, - \ , ) vl 1_ 5 ; )‘:-kj‘

“,
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whére :vs is ‘the fractional volunme occuxﬁe"d by the scatterers. When scat-
térers occupy *he enfire right -half space, tfl‘e fractional occu“iaiéd volume

is unity. Thefefore’, we have’

~ ~g “n Ei(ﬁ) {1~ 'J"d§ﬂ p(Ei)] T =

i£7£’1<a

1
@]

-
"
> ad
o

This is consistent with the extinction theorem. Actually the extinction

theorem holds evenr when 3_:hé fractional "occupied volume is less than one.

-~

This will be discussed in Chapter 5.

2

“ <

3.12 Point of Observation Outside the Scattering Medium

When' Y lies in the space z < 0 (excluding the edge region as mentionead

’))) :} < ‘ ' > ) . i
on page .10}, it is alw?.ys outside all scattere;'s and the total field equa-

i

jfions can be easily derived as follows:

. . - R : ., m o ’
. ° i . - 1 s E . E . | S,
E(__o 'I'"l) Ez, 000 ,Em) "' E (£) 4 jul T(}_‘,Ej) E -(‘I-'J;. J_l‘, 132, L e,zm)
‘Therefore, the average value is = e .

"

/

<E(x)> = J-dvlﬂf dv2°‘°°fdvIn' p(_z_'i, 71/:2’°°4°"£m) E (@)

-

o ¢ S . . s . . X N

NN .
AR - v

o

- ‘ ’ U, 7 - S v um - ‘
< * fdvl'l dv2 ° f dvmp.,(‘r‘l"\-—nZ’ °f °’£m)[j?‘iT§£"£ E (EJ S PR X))

“ ;
w - 0 s - o o o - ! u

Rt

2T
v ‘ T~ o " ¢

R 1 ' B (s B . .

=B (r) + &, dv r)) T, r ) <E (r,:r.»> : S o
E@ e E Javg pap wxp E@exy>

‘O - Lr g ‘ , - . B . B K ) ’ o e

o

. * m , v ! - \»‘ .7 ’ . " -

oood .9 ’ E e

3 ) ‘E ° o .8 . e 00 3
E"(r) + fdyijEJ) fdyl v.f‘,dvmp(le,,, ,‘,rm.‘;gj)T"(xj,_Ej‘)E (_x;;j "r1:°£m) )

2

~
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or i

<EBEP = E) + f av? p(r') T(r,‘r') <EE(r'- r')‘> TOY

II""’ '|>a r ‘ RS R ‘ . . ’ v

! -~This is in the form of a sum of the i cider't and the reflected" fields.

T

3,13 The Exciting Field

The exetiting field on a scatterer centered at El is giv”en by . the

i

" self-consistent equation.

.ome

C : 6o = z § H coe
E.;('I':]-‘ XisXoy ’-Em) E @)+ je2 T(ﬁlyﬁj) E Q.'.j I1pXg ’-Em)
To get the first partial averagé when the scatterer at 31‘ is held fixed, ’
‘ O v . .

we use p(gz, _1_'3, REPE 51)' and integraté over all positions"except _111,, .

. ‘We get - - .
)‘ E >I: : ' ’} B ’ ° ) ” i \ _. . -
*<E (5_1.31)}“ _vf,dyza“f dym p(_z_'z, °°°"£ni'-1:1)» E (31) o

; 2 LI AN E ' : I ] 00 :
o J dsz“ﬂf dv Py iee, X 3:1)[3,_2 T,z By 2y, sX)]
‘ ’, ‘ ’ W - - ’ ' u

’

J?T@%’EJ)E (gjj:gl.ugm)‘

s N ‘m \‘ ' \» i t A N} ) o
1 = ) .

“ E ' ' M s 0 0 r ) H

Fep s Jovpeie Javg. o (avpey, oo iy,

it

‘l)

i

Eiél) j232 fdv p(r.. r ) T(rl, r)<E (r : r 2y )> o . o

.,
b
L ! - s e ' - - ' e
B N o
v ‘ 8]

. or

pd : 1, J','ﬁ-‘uv.'s‘ B 3 oy
<E (rl.r1)> E’ () + f dv? p(r 33 ) T(r r') <g (_1; ixt,r, 0> o ”

cE S vy ! R ‘ EEER L -
. | zztPee | N

R

'
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.Wg have puf ,l . o B
7 L | PGy )
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o -

' and hax"e ‘r;‘»aplac‘ed the‘ sum'fof {m~1) terms by (m—l) times one tei*ni, The

W

;

doma1n of . 1ntegrat1on, denoted by ;r —r'|>2a, is such that the scatterer

at £1 As 'outs:Lde the scatterer at r'. ' ThlS is governed by p(r’-r ) wm\ch

is zero outside this domain due to exclus:lon of ,nlte,rpenetrahion, We‘

[ N .

ﬁotice from '(‘7) that‘ the first” partial évmerage <EE(r :r )>'ié‘ given in

terms of the second partlal average <'E (r

Tsr ’)> of the exc1t1ng field,

The becond partlal average ot say, the exc:.tlng fleldv_ at _Jg_l w11;h scatterers

“at r. and r, held fixed, is obtained from (6) by muitiplying by
L ‘ /- ;

—1 —~2
p(rs, coeyX P LT, ) dv$e . °dv and 1ntegrat1ng, :We getf - ,
k\\ ~ E ' . ‘\ «é

u-

N

. \‘l 1 - -m
<‘E (r1 1,r )> = ﬁiv J:iv J:iv p(r ool :“1,32)[E (_1_"1‘)4- 2T(r r )E (r iy Mr )]

5 Jj=2 ;- %‘
f f l
—~E (r)+ dv.” dv p(r“,r s )T(r I, )E (r..rl,.,“,r)
J y ,d‘f p(r .rl,r ) dv oo o f-dv p(r °°“£m°-_1-‘1’£2’£j)'1_‘(£1’£j)g (Ej .31”,03'_?) -
i ) T ‘ . B , -,‘ * 7 ) i ’ N
mg_(_{jl) + T\r’l, \E (r : r £2>>, T o | B U
u . N il 3 ’ N . ” “ - ) ., .
Q(EJ,: £1’£2) - E. - o , - '
. N deJ m=-2 - T("I-tl,"'x"'j) <§ J(_r_'.j: EI,SZ,EJ) , : o P
Lor: LN - N ’. N ‘” K 2 5’ - . \ ?
. . ' . T 1
<EE(r °ur r )>:Ei(r“'_;)+T(rf r. )<E (r, cx )>+ﬁiv p(r'.,r r )T(r r )<E (r"@@: r )‘> i
= Eg iy Eglost (S Zo° Ik RE M TR o rf— X
T lrl-"r'l>2a - ‘ o,
[E3 ~r'|>2a : T ,(8) A
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Thus the second - partlal average is given by an equatlo% 1nvolving the

[al

third pertial average° It is obvious that this procedure can be repeated

to get higher partial averages aed‘we ultimately get m equationsf The \
. B “ B _/,-"

s

last one, in fact, will be the ex@iting field equation for #<fixed con-

>

figuration which is the average of eduation (6) itse1f°

e}

" An alternate approach to the problem is the use of iteration tech-

nique. This technique iS‘especiallybusefui if”the medium isuﬁeakly randon.

Equation (6) can be written in terms of successive orders of scattering

b& repeated iterations as, beilow:

O

) i i
2 m
‘ N . & T(r ,rj) [Z T(r ,r)E“(r ) »
o j=2 o k ]. . 7 ’
, . Hé,j . 3 < A ) §]
m : ‘ m : { gﬁ - f }
+Z T(r r)[ T(r.r'”‘) T(r, ,r,) E(rp); ]
| R Tyt TR 2 e
L ;e‘ "
o . ;,)u+ LI ] .' 4. - " . K ' A o “ ,(9)(

Pl

It either (65 or (9) e¢ould be'solved vthe-fesﬁlt could‘be substitdted‘in

u 1Ay

the equation for the (m-1)st partial average and, hopefully, we could

solve that equation, kBy successive 807 utions and eubstltutions we. could

G
U

ultimateIJ solve the equation for the first partial averageu In practice

o B >
v o NIRRT ’ RPN

23

this is impossible due to the large number of scatterers involved in mui-

~o
G

y -
u '
v .
o

o,

‘tiple scattering situations° Some approximations aye, therefore, necesearyo

Kl



E (_I:J’:El,voé,zm) = E(r erl,rz’ooo,r )

3.2 Approximétiohé in Mult;ﬁle Scat?egiﬁg . . I R,
”In order to formulgté tpemmany-body scattgring problem in.a form that
can be“solzed for specific cases, we have to cdnsider'somelapproximations,
‘Ogé Qpproachrisft; look ét multiple sgatteriné from the éoint,bf' |
viéw,of successjve 6rdérsoof scatteriné as expressed in equation (9')o

A

‘The first approximation ‘would be to consider the flrst term alone and -

replace the excitlng field by the 1n01dent field 1tself This- is called‘

the»Born_approximation,r‘It has been-used in Chapter‘4“to solve the problem . o
wHenrthe,scatterers are sﬁﬁeripal in‘shape. This approximation is good

enough, when the average éeparaéion,of scatterers is lérge compared to,

[

' their size. In the second approximation, each séaftergr would be excited

u , ‘ - : . “
by“thq.ipcident field plus the once-scattered field. Such successive . i

approximatidns can be made to get results to any desired accuracy if one
can evaluate the irlltegra'ls‘im‘/olved° In'the case of sphéres it has not

been p0351blp to evaluate thein*egrals involved in the second approx1mat10n°

2

Another approach is to consider the ex01t1ng fleld at a scatterer at

Q \J . 2 ,

,Ej in a given’configurqtion as’ an expanSion in which the first term is

the tofal field at’rj when this’ scatterer is not, there (that is, in a

configuration of (m-l) scatterers). The second and higher terms then

3

";nclude the rescattering of the fiéld scattered from this scatterer when

it is put béck;in~the configuration, Thus we have

« ‘/' - ) ! ‘/ m q
+ T(r r ) {l(r r ) E(rjarl,ro,oo.,r )}
' k_1

-

)

e 3
b
. N P o - . v

BV 5 '}' ) ~‘A“ " | S . " (10)

i
!
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2]
~

0 !

The approximation congists in neglecting the second and higher terms on 

.thb'righf hand side., For.aensefsystems in which multiple scatfering effects
ére most importaht;‘fhis ié a much bétter approkimétion than the Born |
app}oximation“f’A compar;son of the mnagnitude of the second ?erm with'that
9f th; first has been made by Waterman and Truell [1961]‘by CAQQidéiing
point‘scattérersxéng scala? w;ves,' They ﬁave develobe& a criterion acqoéd;.

]

ing to which the second term is much smaller than the first if

PoQ P
A <<

J

where p_ 1is the mumber density of scatterers (assumed constant), Qs'is

the scattering cross seétion'of a single scatterer and k is the propaga—n

- — v

tion constant of the medium in-which- the_scatterérs are located. This

) =

criterion is éhown to be quitetgeneraily valid ZJor most physiéal situa~
N . €Y . v
tions. ,

A third approach is to consider the hierarchy of equations for partial

averages of which equations (7) and (8) for <§E(£1;§1X2 and <§E(£1351h£2x5

are the firSt"tWO% The approiimatioh consigts in breaking the hierarchy

.at some point, that is; taking- 2 -
7 <EE(r ur r ‘Q r P> = <EE(r ., T | 0 > ‘ .
oot —'l o:"l,‘""z,oao'z—‘i’-“j ~ ’J— -—1““‘1’—2"\9°°""—i ) )

v

'fof some i‘and.j,, If we break the hierarchy at the first equation itéelf

fhen we héve

o
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vThis'épproximation fras been discussed by Lax [1952] and is designated as

the "quasi-crystalline" approximatiom, since, in the’ case of crystals, it

holds exactly. - He has shown that it is a very-good approximation in the

case of dense systems where muitiple scattefing effects are most important.

It is equivalent to'neglecting the fluctuations in the exci%ing fieid at

%

r. due to the. fluctuation of the scatterer at r

r r, about' its mean position.

We shall use the last ﬂwo,approaches to simplify our equations,-

3.3 Approximate Equations

u

_ Let us approx1mate the exc1t1ng field at the scatterer at r by the v -

total'field at ry when the scatterer at r, is ?emoved from the coniigura-

" '
!

tion., We get: : . 2 ) . o

iifﬁ&Sm)_ ?, E(r 2,r3,.“,r ) y

i/ , . E L i
= h ‘,2 H 600 y
= E () +,j_2 T(yXy) By Ly, eensXy)

v
Pl

| Mul?iply;ngdboté 51desvby p(£2’r3’°"’£m: El) dV2°°‘de and 1nt?grat1ng
we get'?" ~ v

"m . ' '

F)

<E (51;31), E (r ) + &M yfdv,oo.dv p(r yovesX T )T( 1,r )E (r °r2’{i$’£m)"

j~2

Now. let us write

1° mo =3

by

p(-x-:z»’ »eoyzm:_g ) = p(£j:£l) p(l\z’ (3 o,£ . o ) v o
4 ) ™, - ) : ‘ ‘

" - o v

o ‘ ' Y '
- pcgjzgl)[p(_z_'_z,a..“,gm:_xlj) - p(gz,ooo,gm:_gd,gl)j

s

§



y

. N ] v ‘ . E -
. Yo - "" p(}iz, o .,ﬁma“{d’ﬁl)}'r(f;l’ﬁj)‘g (£J o£23 ° :o“qﬁm)

]

Using this expression we get

N

E R N
<E (51’31)'} = E (5'.1)

+ Z [fdv p(r

- Ty )fdv o.afdv p(r, “,r r )T(r,,r )E (r 2,‘.,.".,3_11.!)] -‘ R

i K- | oL
= _F_J_"(gl) + & ['.fdv-j p(_gjzgl) T(r r, ) <E (x’ :r )>m_ 1=R

'j‘=2
= E (r ) +. f dv’ p(r'-r ) T(r r')' <EE(r':r')> . - R
‘ o= = = -1 7
o ppree

Here th‘é- notation <EE(r'°r')> -1 indicates i:he first pai‘tiai-average of

the exciting field at' r' when the scatterer at r' is, held fixed, taken ) '
over the ensemble of configurations of (m~1) scatterers, Obviously if

. <EE(£' ‘;.“1:')>.

the number of scatterérs is very large, <.E (r': -5')>m 1 ®
¢ . e .

The term R is given by

: 3 = Z ( ) [ )
. R ! fdv fdv pr‘j& ;‘o(r r r

o

o,

“

‘|

]

In the case of perfectly random distributions, the scatterers e statistically

independent and : .

s

p‘('_le,y_z,,»,.g,_x_;m)u = p(z;) p(.ga)ooop(£m>

"



28 !

In thig case

' ' '
[p(rz,n.,,r r ) - p(rz,.bn,r rr )] = 0

and, therefore, R = 0, Also, p({'ﬁﬁl) = p(r'). ' The domein of integration i%

takes care of the equuéion of-interpqnetyafion° So, for the case when
the number of scatterers is very large and the distribution is statistically i%
indépendent we have %
<E (r:irl> = E (r) + J dv? p(r') T(r,r") <E (r'°r'x> - (139 N : -
’ | r-r ’[>2a g

.v“. ! ‘ W

A comparison with equatiohl(7)'show5'thé% for statisticallylindependént o f' ~ Eg

o

‘.scatterers‘,i‘ the approximation =~ - A .

H

r

3
is equivalent to the qua51- rystalline” approximation

We shall now use this approximatlon to simplify the total fleld equation.

When the point of observation is in the region a} 0 the average total

< H D> e i H . .
E(ry:r,rf s <E (x> . é

field is given by equation (4) which, with the above 9pproximations, becomes ?

o |£-.1:ft<a \.J|“x;-l__'|>a‘ R T lr_ e

L

£

L f~ dv* p(r') 7! (x,x*) \E (r °r'x> - S -
[r~r'|\a Ny v ST g -

i
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In the second term we have put

Joavpen [ oatpien rarn €@tz
|x-z'|>a jr-r"|<a ) '
. lzv»£'1‘>2a

- f dv? p(zc) T)(_):‘:,_I_‘_') <§E(£l:£‘vr‘)> ’ f dv" P(_E’") W
|z-rf|>a | . lr-z"|<a |
. lz‘“£9|‘>23‘

‘a

12 0
o b

We note that except for tﬁe case when r' is.near islﬁib E"winfegrétion

can ﬁc carried out over the domain jr-r"{<a siﬁce no«chance'of-éverlappipg
of the scatterers at‘z"anqvff will arise, Sinée the,g'—integratioﬁ“is |
6§;r the entire half-space sucﬁ that E'igloutside the scatterer at gk'and
the r'-integration is over-a small volume Qf the size of a.Single scatterer
such thgt r is always4within the scatterer af EJ, no significant erfbr

- “ N -
will be involved in replacing . ‘ '

[ pan
| x-x"Ixa ‘ | S : -
|z*-x"[>2a ’

by - Au
\3. B ‘f dvv? p(—!::") !

‘Armx??; <_a \ , ‘ . ) ’V | "
' \ : , T : ' u ot
Then:thé average total field at a poink in the space =z 2}0 becomes, = |

J

%
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<E@P> = J oot paenliE @+ [ avt pirdTe, e )]
lz-x'|<a ' r-z'l>a
e j‘ dv’ p(r') T (r,r') <E (r' r’x> ‘ (14)
" |r-r'l<a

- When ‘the Doint of Qbservdtiqn is in the space z < 0, the average total "

field is given by equation (5). ) “‘ °

1)

We now have a complete formulation for the average total field .both
when the point\of ébsgrvation is inside the region ZAZ:O to which. the
‘scatterers ;re cénfined ~and when it ié‘outside £his region. The total
"field is given in terms of theyoperators T(r,r ) and T (r r') and the
first partlal average of the exciting field. We shall now proceed to solve

the problem for ' the caseﬂof spherical scatterers in_the folldwing chapters.

For reference purposes, we recapitulate the relevant equations below:

EEH = (1 - J awvpaniEt@ v [ avpen T(r,r )<E (x> ]

| x| <a lz=xti>a -

+ J dv p(r‘)T (r r') \E (x':r')> " when r lies in 2> 0

§

\p— t<a .
(14)°

 <E(x)>

i

AY

lr-r>a . .

L N S | ()

where the exciting field in aﬁy~régibn satisfies the equation

<@ = E@ o+ [ avpan e, 2l <g" @zt a9
‘ |r— '|>2a '

E (@) + . j‘ dv p(r') T(x; r') <E (@':r')> when r lies inz<0 .

4

LA
gt

b
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. 4, Single Scattering by Spherical Scatterers

4,1 The Average Total Field Equation

It has beeﬁ indicated earlier that we Ean”evéluate the fotal field
to any desired dégree of accuracy by considering successive orders of i
gcattering. Mathématical difficulties, however, make it imﬁossible to
obtain exact expressions fof the total field even for thé‘first.order(
scatfgring for any bué the simp;est éé;metrical shapes of scattere;s,
In this phapter we'éhall qonsider scatte;ing b§ Sbﬁeres and shall con-
sider the first order‘scafteiing‘only, This is”callea the’ Born
app;oximatioh and cénsisté’in replacing the excitihg field <§E(£:£I> by
gi(g) on the right-~hand side of equation (13). Let the incid?nquave
be a 1ineariy polarized piéne wave, incidégt normaily,’given by ‘

A ikz
ie

i
B = 1

We shall consider the number density of spheres to be constant so that
pr!) = Po for z> 0 and p(zr') = 0 for z < 0. The average total field
at r(x,y,z) is, therefore, given by equations (14) and (5) which, for

this case, can he written as »

,

<w@r = l1-p [ aviiEt@ vp, [ vt T Elao]

| xer | <a |r-r'l>a
! 2;0 ‘z' 2‘0
' 1 i '
* P, j’ dv' T (r,r') E"(x') for z> a (15)
| r-r 1 <a ) ’
P
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and ,
f

<E(r> = E () + po . f dv ¥ T(_g,}j').gl(g’r.)l U for' z < -a’ . (16)
' z">0 ‘ o

“

oyt

where a is the radius of the spheres. Since-E (r) is a known quantity,

we need to know T(ﬁ!E') E (3’), which is the scattered field at r from

,a‘sc?tteref at z'mexcitéd by gl(g’), and Ti{g,g’),gl(g‘), which is tné >

g

‘fiéld at a pq}ht”z ihside a scatterer at r* excited by gi(g‘)b .Knowihg

4. 2 bcatter1ng of Vector Waves by an Isolated Sphere L

théséiexpressions,‘wq can attgmpt to carry -out the integration and :get
<E(r)>. First of ali, therefore, we need to study the scattering properties

of an isolated sbhére.

. -

s

/,

JThe problem of scatter1ng of ‘a 11neariy polar1zed wave by/a sphere

o [

is solved in tgrms of .an infinite series, usually‘calledgthe Mie sen}es

-~

/

. after Gustav Mie, who;ﬁ; 8t solved this’ prob] i in 1908. One seeks a

W

L L -
solution of the yadtor wave equation/f'

2 R

which‘wiki/sétisfy the boundary c@nditiéﬁs on fhefsufface of the sphere,

I;'is}f%ﬁnd that solutions of the vector wave equation can be generated
‘froﬁ'thelsolution‘of«tﬁe scalar wave eqguation . o
e e YZZ‘P F RV & o . . R .

In spherical coordinates, the solutions of the scalar ane equationJare

-y

of the, form o j' .; _ o e - T . o

ER—-

ST

ngt

e KRGS,

N

Rt

W s

.
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\V‘; (@ = % (n:\?) Pl (cos 6) J_(kr) ;, . ' “,

* mnt sin . o B
o : : . ’ .
and_ ‘ - e “ . 1..
3 - cos “m,. ‘ (ﬁﬂ%kr
q}e ) = o (mﬁ¢) P (cos €)'h 0 )

Aﬂ.&

Q

,vhere n = 0, 1, 2,,,.; m = 0, f,gi.,n;,Pm(cos'e) is'the associated Legendre,

(1)

Fblynomlal, 3 (kr) is the spherical Bessel function of order n and h (kr)

is the spherlcal Hankex functlon of the first kind of order n,3: In

L2)

' this work Hankel functioas of the first kind alone will be used. Hence

wé shall drop the superscript for conveniehce and write hn(kr),instead of

kS

h(l)(kr) throuéhout. The spherical Bessel’functiods are,used inside the

sphere 1nclud1ng the orlgln, and the spherlcal Hankel functlons outside

the sphére (since they are regular at 1nf1nity and have a pole at the

v - . > -

Pl 7 . ~

origin). The vectors

3

1) = VYW@ = vx Iz PE]eand 1@ = L vxne

-
o
N}

_‘satisfy”the vector Wave eqhation. Since the electric and magnet1c fields

v oy <

rare solen01da1 (i.e.,. their divergence is zero) only the functions m(r)

and n(@) are usedoujAs ehown,in.Stratton [1943] “ the incident wave can be

>
s

expressed~in_tefﬁs of the spherical vector wave functiops

B - ' -
- - o > - . .

3 : 1,8 L S e
@ v @] - Y @ixe
,(.)‘ mnﬁ . . o nln R . /‘ ‘omn‘ \JU- ’ v 47‘/, ,.7

3De£initiohs and notations here foliow'thbgefgiéen,b§'Morée alid ‘Feshbach .
- ' oo, . ' ' e . « ’ )
[1958]. - - R S .

&



and-
L : )
- (r) = T VX ge (i) S
e. mn
mn -0
o >4 B}
as follaws: a .
A ike 2 on “(2n41)
B(x) = ie = L 3 [ (r k) - (r,k)] - an

- X o n(n+l)

mllngz,#) :sNZ[siﬁ ¢fPi(cos:e)'jn(kr5] x.£¥‘

The scattered field outside a sphere centered at the o}igiﬁ is given by

n° (2n+1) s 3 ; G
== n~f : n(n+1) [ n olr(r’k) by Eelﬁ(z’k)]" ¥ >,§°
\, S a8y

and ‘the field inside the sbhere, the "traasmitted" fiei&, is given by

)
LD

o . N

X 3 40 (nel) ot !
oD
. E(}.‘.) = o i n(n_!_l) [a n Ol (r,k ) eln(r,k )] , T < a”

(19)
s .8 "t - ...t . . ' e )
The coeffiplents a.. bﬁ’ a, and b are determined from the boundary ‘con-

[\ G

(.)

o -

fditions which requixe continuity of the E— and H- fiolds across the:surface

.
v

V)
of the sphere. For a sphere of radlus ‘a, propagation constant k 59 per-
,meability,p and dielectric constant e embedded in a.medium of constants

k, p, @nd e, ‘these coefficients are given by -



E center of the scatterer) and (xﬁ,yz,z ) with origin,at P (the point of

w~

”door&inate axes as shown in Figure 2,

35
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. b d N DL5 BT - n
25 - - Pgdp - (20a)
'n T MSJn(ng)[gh T - ph QN L5 N L] e

"bz_ . - usjn<§>[NSantnSt}]' MNSJn(NSL)fLJ <§>]’ SN
: wgh, (WIN LI, (N L)]* - uNS;n<NSL>[Lhn<§>]'
caz _ Ms‘hn(;)[gjn(g)]' - 3, @tk )] (20¢)
ph (@QINL5 (N LY ]'-u 3 (N )[R (B) ]!
S h (B84 0]V - 3 (D)[Lh (O] (204

“n - Fgs o Moot

gy O TNL, 00 13, (X D[, (D]

~The notation used here is;kai=:§ and kS = Nék“and the priﬁeé indidate

differentiation with respect to the appropriate argument.

3

4.3 Integration of the Mie Series’ -

The equations (17)=(19); giving“fhe‘incidenf; ecattefed and transmitted
flelds, are true when the aphere i’ centered at the or1gin of coordinates. -

We are interested in the flelds at an arbitrary. p01nt r when the sphere

N u

is centered“at another arbitrary~Q01nt rt, Therefore, we use various

u . N R
' - " S W

At

The original cooruinate syetem (x,y,z) 1s centered at the origin 0.’

) with origin at s (the

4

‘In addltion, let, the coordinate systems (xl,y

v

observation) be rigid translations of the original cobrdinate system.

The coordinates of a. point with respeot to the origin s will have subscrlpt

. . a . - - . I v
. ~, , ' - “
2 . . . o
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1 (e.g. X.,¥.,%,, Or T, ,Gi,¢ ) and those w1th respect to the or1g1n P
SRS T 1 )
Wlll have ~subscr1pt 2, No subscripta, are used when refem‘ing to the orig—
inal system center“eii at 0.’ o ’ “
We can now express the incident field as’ 5 ﬁ
- T : T . ‘k'(z'{-z ) ’
- dkz 1X g
P E'gr) = 1 ¢ =1 e 1
’ - - - X T X
B ."- -:eikz, : g n .&?I}."i) [ (r k) - 'i'nl ‘t(r k)]
- " el n(n+l) o1 —eln =17"
" Here'e is 4 phase factor which depends upon the position of the scatterer..
The scattered .and transmitted fields .are now given.by ' .
. cre . ©0 - " B .
0y wioney oo JiKET s o.m (2n+1) a8 3
T(x,x ) E\(\f— ) =€ n=l * n(m-l) [ n cln ’k) * bn -Qe_ln(gl’k)]
P N i 00 - > ‘ T - v “ ‘ !
I ' i, 4y ikz? L (2n+1) t 1 t 1 - Lo
. TErEED = e n=l n(n+1) [ 11 1 kg) .% b,n ’Eeln(zl,’ks,)] o
The “coefficients alsl; b:(’ aﬁ"‘ and b:i are given by equation (20) S .Substituting’
s these’ results in ,eqv.ia'tiér_xs d(ls’)' ahd (16) the a'i/er»aée tota—i field is given by
. . ' ; R A - CRE I ’
- o cLXEQ@M> = (1—-vs) i ol
: \“+: (llj-?-iz Yo f dv? ei‘kz"[' :ﬁo 1“ M Ua (r )=~1i b n (r )}]
A ‘ o0 n(ndl) Yne oln 1 =eln -1
) e T lr- '1>a, - i ) - _J“ . 4
o "’ . e Lo oo' ‘ - ’ NPV g
»»»»» : R 1kz' ) (2n+1) t 1 t 41
, - J X DI ‘
o ,,+ f v’ e [n‘—l“‘jT” nin+1) .n oln(r k ) : n 1n 1’k )}]
e lr* réf<a o T Y :
- S '> 0 I A L (21) v



A ikz ' ~ ika! ﬁ (2n+1) )
2 B Souleh Rl o

ie +p J‘ dv' e { i n(n+l) { n Oll(r )~ 1b n(rl)}]

> o

(22)

- .o ] 4‘ 3 + . N .
when zn<\~a. ‘Here vS = po 3 T e = po J' dv' = fractional volume .

74

occupied by the scatterers. - 5

»: 4,81 Transformation of Coordinates

In order to carry, oui the integrations over r' involved in eqﬁa;ions
(21) and (22), wewhave to carry out translations of the vector wave function

o

,E(El)> E(El) S0 as to express them as functions of r and r'. Considerable S

B ' : «
. L 4

. ‘ 5 ‘ ) . :
The resulting addition theorems are expressed<in terms. of triple infinite
series involving_very complicated céeffic}entsA(forhinstahcé, see ‘Cruzan

[1962]). We shall dvoid the use of this procedure and, instead, useé the

foilowingASimpie and'élegant technique, ’ C “ .
e ‘Thekvagiabie of iﬁtegraﬁioh is the scatterer center S: The point of
' 6bsérvation'P is a fixed:poiht in ﬁhe integration.  The restrictions“w

work has been done on the tfaﬁslation of spherical vector wave functions. o E!’

]r- 'l> a and’ lr~ '|</a on the domain of integration merely reStrict S -

w

to be outside or inslde a Sphere of radius 8, centered at P. So we trans«~

w

form the various ﬁunctions in the integnand to a coordinate sy«tem with

origin at\P; The relevant vector relations and the corresponding relations " ‘ !

]

, -~ in terms of’Cartesian and spherical polar goordina’ces are C e o S

oA [ o

e -
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&)
]
in
4
&)
N
i}
3]
‘j.
N

Using these relations it can easily be shown that

“

ikz! _ikz ikz2
e .= e e :

1,3 PN 1{ 3 : .
| Eolq(ﬁl,k) = ( l) m (r L) . .
.l 3 n+1 1,3
(r k) =

l’

1n :( 1)

eln(rz’k)

_ Substituting these relations in equations (21) and’ (22), ve get
' R ~ L DA ikz" :; ” , ‘ X
<EQ@P = .(1-vs§ hoe N

oy 2 .\n (2n+1) s .88 )
:}+ ,(1 Ys) Py e f dv e [ __1( \ n(n+l) { )-"i Pﬁ—qeln{fz)}i]
. ‘ r2 g T o , . "
: z, i—z : o Y

4

e o ikz
. ikz 2
+p, e f dv ¢ [
- n

('_i)n/ (2n+13

M 8¢

K » - t" 1
1 . n(n+l) { n ol (r k-s)i'-i‘ n eln )}]

it

U\* 3 rz < a

5 ) h‘:;‘ P . ”‘ ,’ ‘ o ° (.23) “ -’l'u
for the region z > -a, and T D ‘“ ‘

- L . . - - . . O
I TN ) v oo L

/\ iukz \ ‘ - ikz : 2 2 n (2n+1)

il f (=1) n(n+1) 01“ )Hb 1\‘(1‘ )}}
E - : > ) n 1 W

- for z -=a, The .I‘egi?ns of 1ptegration are shown in Figure 3. SRR

u

B = an e



. ll"‘. , Fig‘xi;pe 3. The domains of integration (shaded region),

w Y
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4,,’432v Expansiqn of the Integrahds

Tﬁe infinite se;'igs in‘ the integrands Are uniforxﬁly coﬁvérgent -in
the domains of ihtegrétion, The integration and suimmat,ion can, therefore,
bcg} in\\t‘erchanged, The expansions of the spherical vector wave :Eunctions
in terms of’ the Cartesian comppnents can be eésily obta;‘.ned from the

, ' 1 )
defining equations. For the functions ml’ (r ) and n, 4 (3'_2), these ex-

pansions-are given by (see Morse and Feshbach [1953]) R

f

L,3, ., _A n(n+l) A (1.2 » L r-piy .
m (r,,k) = 1x{——-—-~—-—2 Pnz + 2P Z_cos- 2¢ ]+ly[2 Pz sii 2¢2]+1z[ P Z cos ‘?@2]
and _ (25)
X ‘ ( cvos 2¢ :
1,3, - _® en(n+l) {n(n+1) 2, 2 2
Eelx)(zz’ k) = i [ 2( n-17F n+1) ® n-1 n+1) 2 (Pn“l Pn+1) }
(Zn +1) . ,
n(n+1) (’m- { ){n(n+1) (,n+ j
(2n+1) . n n~ n+l n+1 n+l
) cos 2 ¢~2 « m 2 . S pz )}]
2 : -1 n+l "n+l
’ sin 2 ¢ ; ” :
. n(n+1) -2 .2 2
*, iy[ (2n+1) (zn-l + zn+1? - (pn_nl, Pn+1)} ) o
(2n+1) J,. n+1 Znat) 2 _ J T Pn-1 val n+l
n(n+l) ' v Cal 1
*%[h(\ﬁﬂ%*\z (zn_, zn+1) ces ¢2 {(n+l) Pn-lﬁ AR pn+1}

, 'un( 1) n+ | n o
= (,‘ n—~ J n+ ) Gos ¢ {J ‘(nM)Pn 1 el ra-;-.‘r.}:‘i B

( 2n+1)
“ (269
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Here Zn stands for jn when the supgrscript is 1 and for hn when the super-

script is 3. AIll associated Legendre polynomials have the argument (costez}

and zﬁ'has the argument (krz)°

The domains of .integration exhibit a symmetry about the z_-axis andAsince>.

2
2r - , 4
j' d ¢2 sin m ¢2 = jw d ¢2 cos m ¢2 c= 07, m=1, 2, ..., 'lg
o] o. ' 0 -

the only nonévanishing terms willﬁbe those which have integrands independent

. g~§\‘lr-@ »\;

- : _ L
of ¢2.’ An examination of equations (25) and (26) shows that the iygand

iz'components<will have zero contribution. In fact, in view of these

bonsiderations, equations (23) and {245 reduce to

Mgl g
he G

~ .A\ ikz ' ~ . . .\‘ .
<E(x)> = (l-vs) iy e .

o n ikz :
N ikz (-i)" - 2 c 8
- . PIR WL
+ (1 vs),ixe o = qu e [ (2n+1) anPn(cog ez)hn(krz) .
o . n=1 r_ >a E
— 2 :
! ) =y Z,) :?:-z, -
s e ' P ‘ - :
+ 1 bn {(n+1) Pn_l(cos ez)hﬁ~1(kr2) n Pn+1(cos 92) hn+1(kr2)}] EE
i . )
. o n - ikz '
A ke 2 )" 2 ot : E
+ie pq ;?a — J~’dv2 e [(2n+1) a Pn(cos 62) jn(ksrz)l
] I‘z < a E
ot - ' S ‘ o "
. . o . - o ,
+ l’bn {(nfl) -"n-1(c°S 62) Jnulcksrz) n Pm_l(Jcos 62) Jn+1(ksr2)}] . i
“ ” - (@)

. .
v M A

for the region z > a, and,

- . . J
O . . . i
4 ’ v '
“ . ' - ) . .
. y . : . )



43

. . ) ikz : o '
~A:cikz A iRz o (~-i)n R SR "
< = i z . 2N+ . '
 <E(r)> ixe S o+ie o . T .{ dv e [ (Zn+i) anPn(cos ez)hnggrz)

.zé;_z

- _ . , )
+i b { (ne1) Pn_yl(c\os e)h__ (kr,) =n P (cos ©,) hn;ﬂ\krz)}}

-(28) .

for the region z < -a.

4,33 Techniques of Integration .

The integrands‘involVed in the above equations are essentially of
ika, , . . L
the forme '~~~ P (cqavez) hn(krz) for the domains (a) and (c) and of “the

ik, A ‘ o :
" form e P (vos 9 ) j (k r2) for the domain (b) shown in Figure 3,

In the domain (a), the exclu51on of the spherical volume r2< insdres
that thege is no singularity. However, it also makes stralghtforward in-
. tegration impossible. A technlque has been developed to change fhe volume

. integral to a surface integral. As shown in Appendix I, we have

N 2 - ey, ‘ 'szz 11
lods € = ¢ . ' S,
fdv2 e F (cos 92) hn(krz) = ;j’[Pn\cos Sz)hn(krz)V7{e e 2k?}
. ‘ o o ; 41{ .
ks, . "iz o
- e .“2 Cmia "ok ) <7'{P (cos ] ) h (kr )}] . dS -

P 4k

where the surface o enclosee éhe volume V”and:gg is the egtward’nqpmal,

' In Figure \aa), the awrface [ P Wl + “z“with the oﬁtWard normals &8 sﬁe&n‘

For U the outward normal is in the negative z ~direcfion and, theﬁefore,

)
the gradient ‘can be replaced by (~ wmw) and ds by anzdpz (usirg cylindrical

R . T

SL Lo T



coordinates)., For Ty

. , SR ) .
‘and we replace the gradient by (- 5;~) and dS by 21ra2 sin ezde

have

ikz

2 ' ’
Pn(cos 62) hn(krz) = I, + I .

J' dv2'e

r, >a,z2 >=-'z

Now /
0 | ikz, iz,
le ,= jqzwngpz [Pn(cos 92) hn(krz) FEn {‘e (= =~

2k 2

2 4k

ikz2 iz2 i 9

‘ (
- e (,2k,

y 3 1 £ N )
2) 5z 1Pn(COS 92) nn\mz; ] 1

4k

The cylindrical coordinates and the spherical coordinates have the following

relationships
2 . 2 2 o
| Py z2 = I, j Z, = Tr,cos @,
and .
1kr2
1 ©

n , . e '
(-1) Pn(ik azz) ikr

i}

Pn€cos 92) hn(krz) .

25

9

)

the outward normal is id thq_inWérd radial direction

So we

(29)

A proof of equation (29) is given in Appendix YI. Remembering that in

the domain (a) z> a and, therefore, a positive number, we have

|

B

AL

”
E
-

™

ot



2 2
ikz 2, * “ﬁ/;z + Pg
1 LT 2 Z
ik [z + 2
2 -
00 ik'z + pz
iz i s/
PSP W e B S I PP LI S b9, 2 i
2k 2’ 3z, \ n'ik 0z 2%P2
4k 2 - 2 o Lk i + 2
1J 2 ¥ Pz
‘ iklz 1 |
= 2 (~i>n[eik'22(-3- B Gh oLy -
= dk ~ 2 "n'ik 9z, 2
ika, iz " a ik)zd
ce Ht - {p 6 o) °
2k 4K az2 n ik az2 k2
A F]
3] 2 )
27rin
= '“—"-5-' Z
k
where‘We haove used the relations
Px) = (DPP @)
n - n
and '
v 1 9 _iikzz +ikz +ikz
) Pn(ﬁ "é“é‘;) e = P (+1) e = (+1)

Simiiarly we have



: of’f? the recurrence relations satisfied by L‘egendre'PoI“ynomials and spherical

6 -

’ o, L Ly, ikz, iz Lo
I \ = «’27;a _ Jsm-ez dez[Pn_(gf)s 92) hn(krz -5;; {e (—-23-{ - :}:2‘) f

" 3

ikz iz ) )
g 2 1 9

- e | ¢ e 2) 57 {Pn(cos 62) hﬂ(krz) }]
, 4k 2 2

i

This integral is straigﬁtffmward and after some computations making use -

Hankel functions and the well known relation (see Morse and Feshbach [1953])

-~

\ ¥ o -
L frelkmcos € P (cos ©) .5in0 a0 = 217 (ke)
o SR :

i "
. L -
: [$) .o - 1) B . . - ]
o © - M ! . i : ’ . . " . i

we,get ' - ‘ ' : ’ e
4 {’)“ ‘ ?Tazin ‘ E “’ : . ) \ ? P
- . ‘et 117 st - ht : s ely - )
R L AR CIEN G IR MR IS HO NGRS
wilere the primes-indicate Liiflferenf:‘iat"ion with respect to t‘.\he)argumelnto
We 'c/ah,othere‘fo‘lje, write *7 . ' . '
-ikz n o

[C

A9

<l

. K ' o - B
- [ avy e "B (cos @)k (kry) 3 [2ka '+ o], 2> & (30)
ry %,y 2oE R R — - \,-

- - . ° h
- ¥ M o :.v. . ) o
where we define o -

¥
cw U

a = :;;2'[1;11_(;)3&(;) * %té)al‘jé‘) + 29{-%(@5’32(@) -,V.rxfl';ii.:)ag’(?) o

. - " Lt ¢ . . -
T S - -(81) .
v In-the domain (B) of Figure 3, the integration is easily carried out
27 a8 below NN L RV :
. DT . . § : v .\) - ;
I’a - :L, L ¢ "‘ ' 4 . R i



5 4T
B . . ikzz
T j, dv, e ) Pn£°°B 92) jn(ksrz)
r? < a N
a. - . lkr cos @2 5
=:21{jr 3, r,) drg fe P(cose)sine de
41rina:2 R o ' o N
= ’"—;{—2——5 [k J (ka),j 1(k a) "k ‘Jn—l(ka) jn(ksa)] " - o
R o - N N 1))
K n E ’ : 0 D .z ’ :
wﬁere we define - ‘ , . - : a}
N . 4§2 : L ‘ - ‘ . N o
By = =3 N3, 4,08 -3 @3 anl (33)".
; l-N o ) . : o
s , - . .
L ) L ’ ) Lo . . o © &
in.the domain (c) of Figure 3,£z‘<--a and-we have . ¢
o - g 2 . T ® ’ ikr
- . . ' + dkz : 2
L TRy . Coon : 2 1 9 e
Jav, e % » (cos o Gy = 20 _g 4y PP Grg) Ef Pt T
. . -1 e ‘ :
. S k . : . ‘ 1‘7( W
B 9 ., ;;‘—,:!

We now have all the integrationq of equations (27) ‘and (28) and are

o
o

in By position +0- write down the final results

v N ™
u 3 L
v Ty

3,4‘ Total Pield in the Born Approximation .

U
o

" For a point of observation in the region z > a, the average total field

w '
v o v g

is given by

.- PN . “ — . : “
7 ’ o - : - . (PN
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) " AT 48 .
. B '. - A . -
<E(x> = ,(l-vs)()ix elgz
- - ‘ A . ;—-- kz B *
o+ Qe po'gg e [Eg 23 (2n+1) (a +b° )
O ~k nsl »
LS X
+ 3 {(2n+1) an o, + (n+1) b a _, +n bn an+l} N
N Zk/ n"l . - hr
AR I 6 g
* Poix e [2k3 . { (2n+1) a B + (n+1) b ﬁ . Fn bn‘ﬁn+l }]35’
4 o : @35). -

“

For‘aupointuof“obseréatioh‘in‘the region z < ~a, the field is"given by

“ B
. z >
' . . m RIRIN

;A . ikz - A  -iksz P.ﬂi o o g .
<E(x)> = 'ix e %y ix et [ 0 Zl“(,l)n (2n+1) (ai - bi)j (36)
. : ) , 2k n=l - ’ ,

S

The most 1mportant resu‘t is that the polarization of the average

total field 1s the sane as. that of the incident field xAnother result

- -

is seen from equat}on (36) which 1s of the form n o . v

v R ' a - -

' <A A e
EeY> = 1_e % 7 EF e M
“. L - . s x . x l ' '

(VRN Yol

£< -a- .

[E RS . M ! . I S

- ,
u . o Lo
o (o)

- - This. sheds that the_ ; _t half space containing the scatterers .acts like

5 o T e =

uaqmodifled mediut which reflects part of the” incident field. “The "feflec-'k

tion. coeffic;ont" E (the subscript 1 indiqates the first order theory)

) is determined by'the~size and‘density of*scatterers and theAwavelengthc

v v

' The‘behavior of the right half space as a modified homogeneoug medium is

© -

'also seen from equation (35) which ‘can be written as ,

.:—’B R

o R e



~ A . ' P ’-.
<E(Y> = ix'Ez’elkz‘(l + 18kz) 2> a.

If § is small‘(gs'it‘will'be for situatibns in which the Born approximation
is reasonéb1y~good), we can write o

iat

s T iN,_kz ’
Rl U CRPVI

By -

- Toa <

_where Ny =148 = -

v - ”

Thus’the, modified medium has a refractive index NB‘and a "transmission <

7

. cogfficient” Ei.,“Within this medium the incident field is extinguished

- . N
as would be expected.
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B

,,equation‘(13) for the exciting fleld, we can obtain the average total field
.o - . '

»to varidus degrees‘ef accuracy by successive iteration. The first 1tera~’4

hln Chapter 4 and expressions for the average total field have been ob-

~ tained. Forethe secend;end higher'iterationsz the complexity of’thedje’
;integ?elsminvelved iﬂereases Yesyrnapidli,u This is because we’dre con-
'sideftng the very genéral case of vector Wstes aud SCéttéiers of arbitrar\

size. In thls chapter we shall eonsider an alternate approach and shail

v

‘ assume that the exciting field can be" represented by a collection of - AR

5; Multiple Scattering by Spherical Scatterers ’ - o

"

It has. been pointed out earller that insteaa of solving the integral

0—; i g
e A

O

“

e

tlon, whlch is the well known Born anproximatlon, has been con51dered - L

AR
.

5
.-?RE: E&

LT
‘ -

e

Bae
-

AR “

O

study the effects of, multlple scattering through the excifing field as

gOVerned~by eqhatlon {13).
N M )

Y

-

T I

U

5.1 Evaluation of Exciting Field Using Two-Exterior Formalism °

o

ﬂdst of‘the;earlier work on muitiple‘seattering by"smetl scatterers . i
,hés”shOWn that~the;distfibution ef seattefers can he nepladedlby'evmodifieé . v, T
homogeheous ”mediﬁm° Thus Foldy [1945] has obtalned an expression for the 'z
reﬁractlveJindex of such a modlfled medium for the case of isotrop:c ‘“ K L -
point scatterersul A simllar result for anls;tropic point scatterers has B : #‘-
i been obtained hy Waterman and Truell [1961] }or scalar wavesa”JThe singlew ' ‘b; {;
scatterinv apnroach of Chapter 4 vives the refractive index of the modlfted o t
medium when vector waves are’considered and no- restrict;on is placed on !
~ the size of the scatterers,‘ On the basis . of these results we shell R %' -

9

uniform plane wave_modesAwhen muittple sgattering egtects are taken into

u
' . " " : .- ‘
vt - ! o N . ~ ‘



* . wave mode as follows - e o

’tion constant is k s Thus, using the coordinate systems oquigure 2, we

Lt . . - ’,

gccount. The multipliCity of, nese modes arises due to. spatial diSper51on

effécts, From the,géometry of the problem anq the‘resultstof Born approxi-_ "

P

e

mation, 1t ‘ciear that'thése plane waves will'all,tfavel in the positive

o
.

”czzﬁifectionmiike the incident wave and will all be liﬁearly polafized with

& poiarization similar to that of the incidept:wave. Therefore, let the

exciting field be given by : o _ S .,
) 0 ikkz
<E (r:r)> = & iy Ege : i
=] ", ?

)

" where all k1 s are assumed to be distinct i e,, kzﬁkl, for £, Sub-

"
0

stituting this in equatlon (13) we, get { » o

00, - : - “
A A o ' A
Z = ; ' v ’ - i
o i Eye. o= ,ix e+ P, f dv' [T(z,r )2% 1 Ege. ]:/ :
o v - t jp-r’i>2a . = . :
zv>0 ’
; i 8] . ) . ] . ' ,
_ - o , -w o, '\Liklz
In order to'carry out the‘integration, we need to kncw [T(r,g')VZIi E‘ € ],
: L , A P -
which is the scattered field at r from a scatterer at E excited by the'f >
B ’ ik, 2 )
A .
collection of plane waves of ‘the type i EI .“ Each of these plane

l

2

waves gives rise to a. scattered field which travels in the medium‘of o

L e ¢
u

‘constant k and a transmitted field Lnside the scatterer where the propaga—

i

o .

can, write the incident, scattered and transmitted fields of each plane . -

v

v ¥
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8] 2l

ikzz . »ikﬂz_' 00

: _ » 540 (2n+1) e '
s SO M Tcvs LGP ln( ksl BT
gzt . dkyat w0 ) -
l £Z - IZ o0 )
= -3 40 (2n4l) . 8 .3 o
T(P,F )i Eﬁe : e n~1i n(n+1)[ In—oln ’k) N Blnr—leln(fl’k)J
B , S (37b)
ik,z’ ik,z' oo | g
R PR 1~ 17 < .n Q2n+1) ey
s T @riEe = Bee nel n(n+l)[ 1n—01n(r1’k )-1 EinE In(ral’k )] e

" K N (370)

This is- ‘the so-called "two«exterlor" gormallsm of Twersky [1962aJ indicating

that the 1ncident and scattered flelds travel in two different medlaa

The coefficignts Al'ﬁcgl P Af and BI for the plane wave mode £ are ob~

)" tained from boundary conditionb satisfled by the various flelds onothe

surface of the 1soiated nschizoid" spheze° This- problam is dealt W1th

Y

;n-ﬁppen,xx III and the various coeff101ents are evaluated there, Using
,.0’/ N . 5 . W

’/

;f?f” eqUat104 (37b) we see that the. integral to be- evaluated is

n (2n+l).

nn+1)"

) This is very similar to the one - that was treated Jn Chapter 4° ‘We use

u /. ;o - a—— - v,

ot

the transformation i . e :
s / u P .o
4 . . :
L 4. . o . /
A PRE R SR SR
//"’1 y
Y , ;
and thereby p;fer the integrand to a coordinate System thh or;gin a+ ro .
L ‘/’ J’/ . S i . .. o
. 7 : ., - TV e " . 7 - .
2 I A v . oL )
e ST e e : . .
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"The domaln of 1ntegrat10n is similar to that shown in Figure 3(a) except

*Hat a spherical volume of radius 2a, rather than a; is excluded The ~

ol

A

symmetry.about the zz-axis shows that the ¢2~integration reduces all but

A ! “ C ‘
a few ix-component ‘terms to zero. The above :}ntegral, thepefore, reduces

to , ' ' E
ik Z Ym Z . \ - = )
A A (~1) "2 8 . ‘
3 iy Z €} Y v
1an26 o f dv e | [ (2n+1) Aln Pn(cos 92) hn(kx 2)
, 2\_>=.-
Z, ::__-z
. -
. . ‘ ” S ) B .
o s . ~
| + i Bln‘{_,(.m-l) P (cos o, ) L (kr ) np- (cog 92)‘,hn+l(kr2)}__]

The volume integral can belvchang'ed__ into a surface integral:by using the

relations”
SRR -- ikyz
‘ 2 R 47 : ’
e Ty b K e S =0 |
2 2 Lo ergé«o“ h
’(Vz. + k) Pn(gos 92)4 hh(krz) = 0 . \
and Green's Theorem.' Thus for k, # k; we.have - =

©

- ikyz
e Sl 2 v%{p (cos.8, ) &, (krz)}

fdve P(cose)h(kr)—ﬁ

k\ “‘

=

- o, o akgE,
o e P (cos 92) hn(1$r2§, Vs @ ] as

v

Ti;eruxface 0-is made up of’ W\l(zz

s =z, z> 0) and O (r, = 2a), The inte-
N e 2'2 L

M ¢ . L - o ¢

.grations can be caxfried\.bﬁt"’easily along the lines of those in Chapter 4

»
f. - P v . P
\ . H . PR
B

i
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" and we get the following result R
L ik, | oy 1K)z ., on
J? dv, e . " P (cos ©.)) h_(kr,) = L/ CRENLL P 4ot y
"2 ne A A 3y, -1) e e
r, >2a * % Yy
ZZ :.-Z o ’ (38)
~ where N, ='R1/k and
. . M 2! ' * ' v ‘l i ‘ ‘
Yo = (28) [Nijn-l(leg) hn(zé) "Jn(QNIQ) hn_1(2§)] (39)
i O

' Using this result in the excitingwfiéldpequation we get

00 ik,z '
A

P2 Eje 4 i
=1 ** X
‘o0, . ik,

, A Y

I Y} Ele S

2

. , 00 ) ‘ R ﬂip [+7s)
ika o5 /i\yEielsz —_— [T (2n+1)(A£ C+ By )]
£=1 “ k (N_e—l) ‘n=1

o

&)

2mp,,

_m~_—_-—~’[ 23 (2n+J) A! Yo + (n+1)B ', +nB; vy ]
ks(Nf - l) n-_—l{ . £ ’e In'¥d g 1l In f n+1}

(40)

v

Since this equation is true for all values of z in the right-half space;

we can equate tne ‘coefficients of e

the~following equations‘

00 .
Z

n=1 -

N

ARV

o .8
(anl) Alnlyxn

4§ (Nz 1)

LU ¢

v

Sin

\1kZ U ikz )
, for all I, and of e 4nd get

"

: : B ,‘3 .
ARS 8 o4 _ 2" 2. ,
* 04DBpy Yy per* BBy Ve, nal - G- D @D

U

[Z) (2n+1,) (Az +B£ )] +1 -.~‘. 0 ,‘(“"’425’

RREC
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Equation (41) is the dispersion relation governing the refractive index
~ " | PR .

of the modified medium. Its rootg are fhe different modes which the-mediuﬁ

can sustain. - By itself, equatlon (41) iz insuffzclent for gettlng fhe

”

refractive index‘l\q‘co This is because, as is readily seen fron the. ex~
pfeﬁsiens for Ajn; Bl in Appendlx 111, thisuequatlonJalso involves the
permeabilityﬁpftcorﬁesponding to the f-mode. However, another equation
inVOlviné the same two cdnstants N}nand:pi can be easily derived U From ’

the geometry of the problem it is clear that the medium will behave in

the same way 1f the in01dent wave 1s polarized 1n the y—directiono, We

can, therefore, start by taking the waleld in . the x~d1rection and carry

‘out the entire analysis in a similar’ way. The "two~exterior formalism

. i , N “ S
will give the scattered.field in terms of the coefficients an and Dln o

(ds discussed in Appendix III) and we shall get another equation similar

%o (41),es below -

. n=1

'(14) and (6) can be writteg;as follews . 7

o | » ( 3
) s 8 o s ) ' 2§
Z [(2n+1) Cﬁn Yon * (n+1) n&n Yﬁ,nnfl+ nnin Yl,n+13‘ vy <N£ ?

o
o

v " o (43)

Between equations'(41) and (43) we can get 8 transcendental equation in #

v e v

ﬁhieh'the only unknown is Nlo' The different modes will be ébverned by

this equation.

5:2, Evaluation of the Average Total Field - e

. W . ' :
. The average total field can?be demived in a straightforward manner

N
‘\
using the plane wave representation of the exciting field Equatlons

~
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‘ , - .- 00 ik
I . {.\ ikz : | : A r,g“
<Ex»> = (l-vs) ie + (l-vs) P, J‘ dv' [?(g,g') 123 ixEIe'>, ]
- ) =]
‘ . N § k.5 'I>a . 2T
ik, 7'
A
oy Joa Py 34 e
; .0 { =1 X o .
lr—r'l<a
when 'z > a,, and ¥
' ik, z'
N A ikz ‘ £
<E(x) = ix e + P, j‘ dv’ [T(r, r') 2) i Eﬂ e, ,]~
’ [T '> ﬂ 'e 1 il ¢ .

~when z < -a,

T

~ The "two~exterior" formalism of the last section gives the scattered and

oo o .

transmitted fields as expressed b& equations 37(b) and 37(0)° Using/é

©

coordinate system ‘entered at P, the point of cbservation, the above

equations reduce to =

; BN A _ika
<EQ@)> = (L-v)i e

‘ ik Z ik,z, o
’ . £72 2
‘ £=1 Cp >a nml‘i . .
" 2a\= . . N y
22 2:2
A +1 By nelnSrZ’k)}]
© - ikyz 7 ikym, o e
DV AT 72, < )P (a’n+1)
+ B (AT : f dvge L& (=1 n{n+1) { ln——oln(rz’k )
2=1 e © n=l
© o r<a
2 : ‘
RERR .x_ielq(gz, ks)}l o (44)

~
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when z > a,~and 7, ’ , ' ' ' ' . i_d
C ) ' ‘ 'k 00 o
A ikz 3 Lz yn (2n41) :
C A 23
El» = % * 0 PEge ( dvye [ Z (- (n+l) {Almoln ‘2’ k)
=1 z_ ez n=1
N 2 = .
! o 3 o
+4B] no (ry,k0}] - (45) -

g

‘when z < -a,

The domalns of 'integration are those shown 1n Figure 3 As discusseéf,

7 ,

earlier, the yxial symmetry of ‘these domains and the nature of. the' sphex cal. “

vector wave functlons reduce ‘most of the teérms +o zero. The remaining H

"terms involve integrals of the'type\ , ' e
‘ , 5 L
O . ) ) s o N .- 2

ikyz, '
j~dvz e . Pn(cos 62>‘?n(kr2)
’and ' j‘dv e £ P (cos e ) J (k r,)) ‘ “ R P
v . 2 | 2 _ - E

"

Let us’consider the fiéld,in the region z > a firs. . In equation (44,,":

2

"
4

the second term has the donain cf integratxon shown in'wigure a(a)‘

U51ng equataon (38) we get ‘. ;: j‘ ‘ | ; SR
S f ) ) o
S _ i(k~kﬁ)z S S S
j‘ P (cos o, Jh (krz) ~§gﬂ3-— i + *—Eﬁzﬁ——— gi?"6£n‘
i N A . I
z. o s ' (49)
. e " . o Q RRTI
‘Whereﬁafn is defined by o : o S T ‘
’ - ‘ (’C. ".\I: ' .
. (.
. u G.Qn [N‘ej 1(N£§) h (g) - Jn(NI%)h (g)j (47)
W kS o i SRR
o \\\ \\\“ ) /
’ ) \-‘7\ K \ 'h ‘ ' ' »
. ¢ E 1 .‘( {:‘: t )
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The integrals appearing in the third term of equation (44) caﬂ3be évé1uated

as follows

[a)

C ik,z, .
J‘ dv, e kh(cos 62) Jnfksrz)
1'2< a ‘
a V1 . .
= 27q jidr rz j(kr) J~d9 " gin © elkﬁrzcés QZNP (cus ©,.) g
J %2 a2t o T2 P n 2 ;
"41rina2 - . \ ’ ‘ , @
= ;§~j“;§ (kg 3, (k8 Jn-l(ksa) - Ky 3, (kga) Jn(ksa)]
L. s .
. ag K o
= —— , . 8)
3,2 3. 1 €pn ‘ (4
where éﬂn is" defined by
€4n = glth jn(ng) jnfl(ng) - Ny Jn-—l(N.@z"’),Jn(ng’)j ,(égi

Combining these terms together, the average total field in the region

z > a is given by

mpen
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gorern
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<E(r)>

By virt

to zero.

where t

Et’“'
-

1ot et [
2
2&3 (Ny~1) * n=l

. A ikez
= (1 Vs)‘ix e

00 , 0 :
+ & (lmvs) i po-—gﬂi;~— ikZ[ & (2n+l) (Aj + B )]
£=1 T K (1) n=1 o
E 1k£z m {
+ (1wv ) ) E p ~3 e (2n+1)A 6, + (n+1) B 6
1:-1 g ° 'k (Nﬁz“lj } nin 'e n=1
8 .
5 +n Bﬁn 6iyn+l}-J
L 00 ) k.z o0
A o £ ‘
s p [ 2 {cendal e, s (nﬂnl) I
L=l 1 EPy k3(Nf~N ) nel in 1 £, n-1
o ‘;!‘,fv-f,’:/'”{' - ) o '
¢ .
*n B, 61,n+1}]‘

ue of equation (42),

The equation, ther
<E(r)>

he t#ansmission coeff

3vs(1~vs)
£

.2 4 gt
nel:!

w ' l &
2 [(2n+1)A:n 6£n + (n+l)Bin 61 a1t B B
: “ : 5

the first two terms of this equation add up

efore, reduces to the form

zZ> a (560

%>

1

iciehts are giveh,by

8
An 61,n+1

)

j‘

'S © t R g
+ E, & [(2n+1)A; €, + (+1)B; €, ~ +mB, ¢
ZQS(waNZ) I”nzl R 3 ﬁn’ An "4, n-1 £n lfn+l

‘(51
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“ and (43).

Y

ccntaining the scatterers as a collection qfﬁplaﬁe wave ﬁodeé.w

“t

“da

ponent in the field.

It will-be shown in.the nqkt chapter.fﬁa§“whgp the spheres are very small

comparéd to-ﬁhe wavelengfh; only one mode propagates and tﬁehpropagation

0

Thus-wi Bee that the averagée total

I

s

> V

‘constant-agrees with that derived by other authors.

R ikz
‘The extinction tneorem is ‘verified since there is no e

It is seen that all modes are 1inear1§ polarized.,

fié}d prqpagateé in the medium
The, propa-

gation constants of the varlous mndes are 6etermined by equations (41)

s

Turningenow to the average total field in the left ‘half space a

It

be evaluated as beloq

by ’

\ . kik z
.[’dv e 172
2y 2%, T,

= zm-n

j'dz

,Pn(pos 62)~hn(kr2)

I

i

— ) o0 X 3 ) ! ikz .
= 2pe1)" faz P e R
-',-@ J %5 . 3 .
-2 Sk
B B
u k (k£ +k) — At
et . 9"

Using this‘gqudti@h,

i

&

A% v _ Lj,
T e o
o v A ke R
g <E Q."_)> = :Lxe + ZL x £ 0 \,..._.ﬁ.._..‘
e T ‘1=1« 'y (N1+1)

oM

A

w’.

1

(45) can be rediced to the form

ikr

2

.‘ 1 9 e
P (= —) .pr.dp ——
n_;k §§2 o Fz T2 ikr,

'typical integral in equatlon (45) has the domain of F1gure 3(c) and can’

w o . Jo
270 @) @4y, - B )1
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 m<-a " {83) .
where the. reflection coefficient is defined by
ST . :Si}si: 2 a s s S -
E = & = g T (1) (n41) By - By ) S (B4
B =1 4§ (N1+1) n=1 Ca : L . -

)

_gnalysis., F,Jever, sufficient information has been obtained to determine

the. refractive index of the modified medium.

61

S0

Thus on the left of the scatterlng reglon, the total fielﬂ’is ‘the sum of

qthe incident field and‘a reflected'field ' The reflection coefficient is

.

determined by the properties of the scatterers. ..

FRTE
I

o
gk
5

;- This treasment has given a fairly good picgure of multiple scattering

D
z

of electgomagnetic waves by a random distribution oflgpheres of” arbitraryo

i

size and material., It is by mo_ means complete.. fhere is not.enough

information to determine uniquely the amplitudes E£ of the plane wave

mooes m king up thp exriting field° Because*of the complex1ty of integrals;

" the treatment has excluded th& infinite slab regien -8 < b4 < a from the

‘o

vy
ALY - v

3
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T 6.1 Single Scattering Behavior

‘and the Mie series coefficients are cousiderably simplifiedo 4

6,11 Sphere Size Small COmpared to Waveleng_H

5

o
N

- -
T 0 [T i
B a el

8. Scattering b§VSpecial7Typee of Spheres

i ' " o o o

In the last two chapters we have considered the_behavicr of the[staw

.tistical expectation of the electric field in weakly random as.well.as.

strongly randomﬂmedia,' The treatment was qulte general and no’ restrictions ~
were placed on either the size of the spherical scatterers or their electro~

magnetic propertieeun 1t is worthwhile to consider a few special cases and

-f:study the properties of -the medium vhen certain constraints are placed on

the scatterers, We shall consider propagation of low irequency waves for

which the wavelength is much larger than the radiue cf the spheres. In

-

.this case the parameter C(:ka)‘is.very small compared to unity and_ asymptotic :

expressions for spherical Beseel and Hankel functions for small argument

can be used° we shall also’ conaider the case of spheres of very large -

' jconductivity, In this caee there are no fielde interior to the spheres

v

u >

Py
P v !
8 g

We have seen in Ch&pter 4 that the averege total,'field propagates

!:in the medium with ‘ah amplutude and phase velocity different from that of

NS

the incident wave but with the sane polarization. The refractive index y B

of the mediumtis given oy an expression which ia quite involved in the
most general cage, We ehall consider two sﬁecial oases. L

% -

For spheres smali compared to wavelength (that is, atrlow frequencies)

u, B W

@ is very emall and the infinite series converges very fast. Asymptotic

u

) “ Yy
9 . o o -
! -

o s
) v



 we"have

S L .

“

expansion@ of spherimal Bessel and Neumann functions for small argumentW

i

are of the form (see, for example, Gumprecht and 311epcevich [;9513)

n . N 2 “
2:nf  yvipl b ,
(Jn(%') N = (2!14.,1) s - ’g‘ [ 1 o memmmmmmnte g, ]

]
o~
- N
=
5
|
©
1

< (2n) v ¢
nn(g) =7 2n n gn‘i‘l [1 + w-z(zn 1) "' . o‘u} |

“

" The Hankel function is, of course, defined by hncgag 3 6 % 1 n_(0).

!

If these expressions are used and terms of: order higher than g3 and »

3 - - Yz Ty ‘ o . . | )
(ng) ~are neglected, the refractive index of the weakly- random medium

P

is given by

o .
o g Tuﬁ"u u;u“f ]
2 ”s’“z“ ERT |
B T Wk g Mg 2 n B
.1+~8_[,-9 ..i (-] s‘J“:“S 8 N
R ‘4 '“S*zj"' 5 2}13 "'P‘Nz 4V (Z[J‘Q" B

If the permeability of the spheres 1s very nearly equal to that of the

surrounding medium, the above expression simplifies to A ;\fﬁfiﬂ,q
: 3 Nﬁ -1 :
’ J "2 vs[ E) ]
y . ' . N9“+ 2 -
Ny = 14 5 , s Mg R (86)

o Vg Ng = L. 3v 1 ‘

’ R - - g

R A TN ¢

If, in- addition, we consider sparse concentration, the ”ractional volume

0] v

occupied by the spheres,’d ,is very small. To: the f:rst power pf \ , then,

n/\‘ a

- Y . * b
[P . W B . o oL o 2 e
S v .

Y]
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-~ ‘This is,the'wellvknown refractive index for Rayleigh scetteﬁing (see,
for example, vanwde~Heist [1857]3. Using the following expreeeioni due

to Lorentz, for the polarizability of a gphere

[

N2 2,
. 8 .-

the ﬁef{ectiye,inQegmis'given by the more faﬁ;lian,equationi

“

NB, = 1 f 27 Po;“

7

\

[

It is immediately seen that if the Spheres are nOn-absorbing, then so. 1s

the modified medi umn (since both N and. NB are real in this gase)
The small sphere approximation for p g is equivalent to neglecting

all orders of multipoles, except the first order electric dipole, in the

Mie expansiono Thus the approximations aré the same as those useq

.
-

oy
Rayleigh scattering theory and, cbnsequently, the result is the eme. K N

Another important special case is that of small perfertly conducting

1sphepes.‘ It is)important to note that this case is not covered by Rayleigh ¥

¢ v

‘

scette?ing.- This is because as N p,u> the wevelength inside -the sphere, ‘ .

ﬁé “"becomes infinitesimal. The condition for Rayleigh scattering, viz.,

8 P - } v ‘,,” R | ) Co v

3

that the radius be small compared to wavelength is no 1onger satisfied

[

M

U

;nsiaekthe'sphere.J Therefofe, we cannot treet this case by letting N

N B



h - . . oo . b ) -
0 . ' . “ “y, .
‘ S ‘ , S es.
" T w . :
! . . “ .

ﬁeéomé infinitely large in equation -(57). instead, we_ see that the internal -
fields are zero for' perfect conductors and, consequently, the Mie coeffi-

cients become

LW @

8 8 . -t t
h - [ i A b = e s : o= b -1 O n
W 2 e R W4 ) L S

\ v ooiNEkz E
<E(@)» = 1 (1 -v) {1 --—7)e" , Z> a .
N © ' . o ’ o " \ .
- . : L o sy
N . A A vl - - B ' o -
<E{r)» = 'i ;eik,z - i 2 v 1kz 5 z < =a
- = X ‘ x 8 s )
R ) 5]
and the refractive index is given by o S co
3 ’ 84=1 . L
%7 NB — l -+ 4 “VSF l ) 8] o ' v o . ) _
For sparse concentrations of perfectly: conducting spheres, wc have n
i T Yy
‘ N = ~1'+ 3 o | | (59) ;
‘B & FRCE - o |
In this -case both “the electri(, and the magnetio dipole terms of the Mie N e
v series “are rf—:taisned° Equation (59‘) ghows that there is no attenuation
at lo‘yv frequgncies in a medium containing "smalluperfectvly} con¢ucting sp,hez"ésl""
6 12 Sphere Size Comparable to Wavelength LT N U
- - y . N v 2 L] . . I" .
~ When the radius of the sphere is comparable to the wavelength th@
'contribution o* the high:r order multipoles of the Mie series cau no : /°\‘u
RSN . u i\{\\ . - . \
- TN B © 4' , 1



- used in the computatmon are taken from Lowan, et,:al. [19461 and Mathem&ﬂjc
‘Tables [1959] co s L

f:d ——=)
and (—— 0

expected to show*%esonance effects characterist}c of the Mie series. coeffi~

.cientsa

longer befﬁeglecteéfz The beﬁovior’of:théAﬁeaiﬁmféﬁohid‘theﬁrﬁéIoonw s

éidgrediysing t@é full solution gi&en;inlchapﬁgr 4 for thélBorn‘approximation}”

.The refrgctivo indeQEWillf in general, have an imaginary part alsof~1nqjdating

attenuation in the medium, T S

Tahle I shows the‘balculated‘vélues‘oﬁ the real éhdﬂimaginary«parts

-of the refractive index for perfectly conducting spheres in the rénge ot

B

L, 4 ) e
£ =0.1 to 5.0, These values have been calculated for three values of

the'fractional volume, Vo occupied by the scatterers. This fractionai

dceupied volume is a parameter indicative of the closeness of,the‘oaoking, .

since . . = ' . a . V,V
(9] o -

”v = 4 33 - 2 [ —B ]3

33 P, = 37T

. , fl/p )

-0

1 1/3 ¢ o \ | LY

is a measure of the ﬁvergge separatlon of the spheres, For
o) Co - '

N ) oo o ) )
large values VS, theroro approximation is not valid and multiple scattering

>~effectsvmo§t be considé}ed,, These preliminary results are.obtained uSing

9, - . b Ry v

a desk'calcﬁla tor and we do not have enough information to plot a reliable

o
, 0 .
4 Y

graph for the propagatlon ard atteruation constants,‘ Thesé constantq are

" v N T

Yoo - T u

4

5

6.2" Multiple Scattering Behavior o L S .

When the distribution of spheres in the medium is quite” dense multiple

]

"scatteringyeffects’can;no-longeg be neglected»and~the'treatment of Chapter 5—"

. . M .
- 0o : ; v

" o v N . ., B

o e , b

4Values 6f spherioal Bessel and: Hankel functions and trigonometric Aunctions
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be rétained, The coefficients corresponding to»thege terms are

68

_»should be used. The refragtive index of the modified medium is govarned

by equations (41) and (43§, For the case of small spheres, when both §

and N é are Ver small, only the electric and magnetic dipole terms need

¥ : o

;Zi N [ Pg = ]

s 3
Ay = 3 5 — 1N, ¢
" - [._e...?..:_...e..f., (3 o
) {1 ~ 3 € + 2 ¢ 4 » Yy o

“Using these valués,~equations (41) and {43). reduce to the following slwpler

o form g
] o l - % e nL.»;A
g b =2 N \_,.3_._......_.. 2+ Np) = ST
u,gf["u +2M]1 i 63+2e](+1) L
,. R (609
€, "€y . Py = Mg Ny = 1
€ 8 L 5 2 s ] .
g e e S B

s

These equations give the refractive index, permeability, and dielentric

‘\ N

constant of the modified medium.‘ : o o - B ‘f‘” Y

For the case of perfectly ‘conducting small spheres, equation (41) A o
A\

leads. to the‘fqllowing equation when‘fermS‘up to L and (NIQ) are retginedEVH

. \) . . ' o . ) ‘I‘
‘ . 23 i2¢ 1 1,3,
“Nz [( )+10§ Q]Nl z+;;u 7; ~gb1=0
3 Ty o v , o " . - | ’ 0= - i ) " (61)
At very low frequencies we have only one mode wi*h the refraotive index I
. /\ oA
P = ”J o L - AR )" ) N o
/ given by ' ,”*"-,”‘ > R L -~ ‘-
A . . ] “ : , . i - . . - s K — . " ] ‘.l.
. : h \ R Y
I 6 - i ":e“;\\’ N v - uo ’ \\”r.: ' ) v \f',‘ » '
. L’.‘. ': o . UV e ”\"(i‘, : ' . ° nl \?’I 1,

N

\__ f
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an expression derived earlier by’ Twersxy [1962¢].

\ >
‘ tions this reduces to the result obtained from singba Qcatteriﬁg thaory

.given by equation (59) as expected, The tr ansmission\an@ r#flection cc~

efficients reduce to

t 9 - |
S A
, r 9
‘ E o= -5% \

s . ) . - TR

o o 12 B

- 69

nand satisfy the boundary condltion at z =0 as bxpected Since ‘the tran8m

oo

mission coefficient’ fc- normal incidenoe is given by (seewJordan (1960})

D . Et - Bm . (‘.f_‘_...)2 . "(M_Ei_.&)mé
T B o e
o " ’
, : S o g
we can solve for p, and'g, to’ the first power of v, and get ' ;
i . b i 5
i by 3 i
m— o 1= 5 Vg
. {7 i
- A wi = 1 48 v N ) «
! o e N ) N S ' .I'E‘ . . "
These exprasaiqns agree with the results of TWetsky [1962cJ " For- higher

y frequencies, the oonvergence is- slpwer and more terms of equation (61) have’

Ly . t0rbe'considered. In this cama more than one mode w111 be obtained due to
. t l , ‘ X . // ' ' \
the' spatial dlspersion efﬁﬁcts. - v ST R

Lo /

' . ’ .
’ - - . P o . I N '
13 . B " . B
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- properties, ‘ . o , ©e VN

" terers. Previous work on multlple scattering by spheres is 1argely resfricted

i

~upon the shape oi the volume exnluded in the Cauchy prinoipal value- teohw - K

. nique (Watermamxand ?ruell»[laell). Such’ ambiguity no 1ongergoxistg when

70

7. Discussion: = .

1

Wave prqpagation i a random medium is a very important: problem and

has, consequently, received considerable attention in the liﬁerature.
A theoretical atudy of the problem requires a, mathematical moael that “ o g%
degcribass the properties of the random medd um. Sevoral suoh models are lég
possible and the choiro depends upon the type. of proolom boing oonsidered, ’ "Eg
One model ig that in which some properties of the medium (such as the |
density, rafoactive index, etc.) are considered to be random functions

2

of position, Another‘model one that has~oeen aﬁoﬁted in this investiga—,ﬁ

tion, considers the randomness as . oeing due to the presence of disti“ct g
scattering objects which have electromagneticuproperties different from - .ﬂ‘ ) &
those~of'the”baokground mediumu “In this case the problem is formulated o .
in terms of multiply gcattered fields whioh satisfy a waye equation and ~ |

boundary conoxtions on the surface of the scatterers. ‘We have made suoh - ‘E

a formulation which is valid for scatterers of arbitraryusize, éhape and |

JWe have ne&t specialized tle treatment toifhe tase of aphér*calrocat~

‘ [ \W

to the daae of small spheres and the fields interior to the Sphafe are

\ [t

-dgnor ,dd. The problem thus reduoes to that’ of point scattarersb This oL 5.

introduces a singul&rity in the kornel of the integral equation-and there e

1

is some ambiguity in treating such integrala since the results depend

>z

n/
1"
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¢

L - we allow the scatterers to have finite size since the 3 ngularities are

v o ‘:f

;’ S not in the volume of integration._ ‘This is a mathematically more satisrying
'épproachu Qur: *reatment is quite exact in that the full lfipole solut
of scattering by a sphere is used, taxing into account the fields both

1nside‘and outside th@ spheres° Thus the treatment is valid tbx all

“ , J e

.

- frequencies, The resultJ, when specialized to 1ow frequenciés, agree with e

. . i
the results abtaineﬁ by other: authors, 1nclading the we11~khown r35u1th kB

of RQYIeigh scattering theory. SRR

We have considered Dropagmtion in,weaklv as well as sfrongly random
media. Although the problem has been compleﬁely solved for weakly ranﬂom

/5media, the results obtained for strongly rnndom media ara only partially B
. W . ca b . o

complete, Nevertheless, a dlspersion relation has been obtained for. thcx-\

'
/,“ "’a

scgttez‘ingﬁmediumn It is found that due to' Spatial nispersion6 more than

B
w

ohe mode cen pvopagate in, the medium.~ A11 the modes have a polarit&*ion
identical to thet of the inc1dent waye in the casg of nc“mal incidence°

The present work has developed some. of the bas;c technlques for dealing

\\ V]
-

‘with muitiple sgattering problems, in particular, scattering by sp :8res. o

The vector nature of the problem As fully taken into account. Thisnwork

can be extended in several directions° ~The full significdnce of the theory

"

‘_can be appreciated oniy. wh@n it is applied to get numerical results for
Vspecifichases. The. complexity‘ef fhe fcrmulas neceSsitates the use af o
» \ ,-\: o Ly " '
compubersﬂfd“~$olving'ihe equations. This should proxide “dn inteﬂeﬁtimé

.,,:
- 1,1 .

and’ chafﬁ}e;ﬁt{&n

Arublem(for computer programming and it is hoped itawill f

-l - l\ \ / o

bﬁe;icu treatmen& can . be @xtegﬂed 1h sav¢ra1
(N , Y

"t

Zye jiave Qmﬁttad from consideration a slabmmegian‘ng&r g{
S A v N S oo

i

- sopn Qg‘taken up. Thebtne
T

" Givéctiong, - Fiwik

' o . vy v ' i
W ’ S . . " t
. . R
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‘the boundary separating the scattering region, Thia‘region needs to be

investigated w1th the hope of getting nore informatiOn about “the different

woueso Second, the theorv needs to be generali zed to oblique incidence.

aw

It appears »hat the integrals involved in oblique incidence could be solved-

vanalytically along thq 1;n95’of those treated here. F;nally, ‘the compuf

tation of power and energy appears to be a straightforward extension of"

Ay X i

. ” " o B

J
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Appendix I

We shall develop here a formula for converting a volume integral of

-
.

the form

1xs '
J av ™ B cos 0) b_(1r) (a1)
v

to a surface integrsal, .

The functions aik % and Pn(cos 9) hn(kr) gatigfy the Helmholtz wave

equations

iktz

i
<

(72 + k% e

(v? 4+ % P (cos ©) h_(kr) = 0

everywhere except at the origin. If k' 4 k, we have

ik'z ” 1 ik'z _ 2
J'dv e Fn(cos ) hn(kr) = k'z—kz J‘ [e A\Y4 {Pn(cos 9) hn(krj},
v )

]
= P _(cos €) hn(kr)ﬁ72 R %1 dv

‘ *
ik zJ , §§

= ik'z , ; 7
= " 6[ [e §7{E%§Qos €) hn(kr)} Pn(cos 0) hn(kr)§7e
(A2)

wheré the volume V is enclosed in the surface46 and dS is in the direction
of the outward normal.. We have made use of Green's theorem here. Let us-
operate Soth sides of this equation by ths operator | |

1 k+ /28 o )

1m - { [ cat [ 1), a0
A k- A/2 ‘
A-+0
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Since this operator'involves only k' over a finite domain, we can inter-
change the k'-integral with the spatiai integral and also the limit with

the spatial integral. This leads to the following equation

1 1k
Jav B (cos @ h_Ger) [1m 3 [kt &t

A
v A—0 A

ik'z ,
of{{ii_flo X fdkr F__;ﬁ} v{Pn(cos o) hn(kr)}

?
- P_{cos ©) hn(kr)v{lim fdk* _.i_l_{.__ } ]
A0 k
where integration over A implies the limits (k - A/2) to (k + A/2)., We
shall cénsider a general case here in which k, the propagation constant
of an arbitrary medium (not necessarily free space), may be complex. The
standard method of integfation in the theory of complex variables leads

us to the eguation

t
1im 1 J.dk’ e4ik % eikz

A0 A

'Thus‘the operator merely reduces the left hand side of equation {(A2) to

the form (Al) in which we ére/interestéd.

B

" On the right hand side we have

iktaz ' ik'z iktz
e e

....3,'.... “qkt e ™ ._...1.. lim .,...:.l.... f[ AT
& 83 "Bk A>0 A K-k R4k

4 (k- k)z i(k'+k)

L .t ldm 1 ika 0 v L o mikz '
¥ 3k A0 f N R J
' ' A

lim
A0

] dk
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The first term has a singularity in the path of integration., We, therefore,

take the Cauchy principal value as follews

k+ A/Z £ ~€ 1]
im 1 SERZ e i Ll eik K" f eikz
A->0 A k'-k T A0 A e
k- [2 ~A
2
_ lim _’l_. 1im {ln )+1z(——-—- y + (iz) (Z_Qf}+
a0 A le— ¥p ¢ “2,41 €
2 2
A2 B (1z) -
+1n(Aé)+iz(2 €) + 357 €7) + vu. }1]

The second term has no singularity in the path of integration and we have

i(k'+k)z .
e ' lim ' (iz) . .
A-—)O g TR dk = A0 A [In(k'+k) +1iz(k'+k) + - {k T’k.) MJA
2
lim 1 1+ A/4k , (i2kz) 2
= a0 A PG + 12ka(2 A4K) 4 =g {1+ v

- - vad e

1, ik 1 ok 1 (2ke)’

* %k "k tak T2l 2k 81 T
.4 eiZkz
T

Putting all the ’terms together we get
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1 >
iim _}M fdv’ eik z - Si.if [ iz = ....]:. ]
A0 A a2 T Tk * T Bk
A

This gives us the desired formula for converting volume integral to surface

integral as below

J‘dv eikz P (cos 6) h (kr)
v - "

ikz iz 1 ' '
. J[e G~ V{Pn(ccfss o h, k)

R : ikz |, 1 1 : ,
- Pn(cos 8) hn(kr)v{e & ('éfz; - Zl:ﬁ )}] © 48 (A3)

1 5

LSl

¢

L

RN Dot A TR L

T e LD BTAK B T

i

[

I

PN

:Zﬁ' -

I



79

Appendix II
We have mads use of the relation

Pn(cos 0) hn(kr) = (-1)" Pn(—{-‘-{ az) h <kr) : (A4)

to carry out some'of the integrations involved in this investigation.
We give below a proof by induction of this relation based on the work of
Balth van der Pol [1936].

The relation is easily seen to hold for n = 0 and 1 since

eikr
P (cos @ = 1, h (kr) = —pp=
‘ ‘ eikr
Pl(cos ®) = cos @, hl(kr) = - 5 {kr + 1)
' : (ikr)~ -

Let us assume that the relation is true for n and n-1, We shall show that it

is true for n+l, i.e,, that

nil oy 1 8y RS

P +l(cos\e) hn+l(kr) = (-1) n+l ik az

From the recirrence relations (see Morse and Feshbach [1953])

0 n+l .
) (kr) h (kr) = hn-—l(kw - '\..«k..; hn<kr)
o - n(n+l) o , _
sin 8 56 P (cos @) = ey [P , (cos ) ~ P _,(cos o) ]
and ' 9 0 ‘ 5
; gin @
% = Y.cos 0, Y = 903 9-5; e 56
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we derive the following relation

P (cos @) h (kr) = i [nP (cos ebhn_l(kr)»(n+1)Pn+l(cos e)hn+1(kr)]

0
9 (kz) 2n+1

) n . nsl O
o e Pn+1(cos e)hn*l(kr? = Pn_l(cos Q)hn‘l(kr)w "ot TG

ol Pn(cos e)hn(kr)

Since we¢ have assumed the relation'(A4) to be true for n and (n~1), this

reduces to

. n n-»l
P +1(CQS 6) hn+1<kr} = m"[ (“"‘i) n l(ik az) n (kr)] - -
. 2nil [( D% 1.2y n o) ]
nel 8<kz> “n'ik 3z
n_ 1 0 2n¢l 1 9 R 1
= 1) el Toe1 G2 T m;;i Tk 52 "nYx azj} g )

Now we use the recurrence relation

2n+l n .
=L . P \
n+l x Py () n+1 Pn l( x) ?n+l(x’ =

-8 L '
with x w‘ré-gz + This immediately reduces the above equation to
4 .

1
Pn+1(cos o) h (kr) (~i) n l(ik az) h (kr) .

Thus we see that (A4) is true for (n+l) if it is true for n and (n~1).
But we have already seen that it is true for n = 0 and 1. The proof by

induction is, therefore, complets.
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Appendix I1I

We consider here the "two-exterior" problem of scattering by a aphere.
Let an incident field ?xeik ’ excite a sphere of radius & and electromagnetic
properties specified by ks, “s and Es° The scatfered field travels in the
medium specified by k, u and,g° Following Stratton [1943], we write the

incident, scattered and transmitted fields in terms of spherical vector

waves as follows:

i i7" (2n+l) 1 1
D M St ol -
£ @ pey  D(n+D) [ m 1n & k) =1 Beln(}:’kﬂ)]
0 n
s i (2n+l1)
= 2 SedSnd o~
E (}:) = el nin+l) [ Aﬁn mol (z, k) i Bﬁn n (r k)]
© .n
t i (2n+l) t 1 . 7 1
B e -
@ ney (L) [ A Eoln(ﬁ’ks) 1 By 3e1n<£’ks?]

The boundary conditions require continuity of electric and magnetic fields

on the surface of the gsphere. These can be written és

[T, %@ +E -~ 9] = o0 | (A5)

-] =0 : (A6)

The vector wave functions can be written in terms of spherical coordinates

as follows

1

. ) SP.
1,3 Ay 1 - A

(r k) = ietgfﬁwgw zn(kr) P (cos 0) cos ¢ - i¢[z (kr) w~~ sin ¢]

]
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L 3 A oonin+l 1
n @k = if[~£%%¥l z (kr) ¥ (cos ) cos $]
) aPl(cos @)
1 n
+19[T{; 's“; {r"zn(kr)} Mﬂé‘fé‘w cos 4)]

1

¢ kr sin © ar {ra Ckr)} P (cos ©) sin ¢]

Here z = Jn if the superscript is 1 and z = hn if the superscript is 3.
Equation (AB) leads to two equations when the above expressions are sub=~

stituted in it and the orthogonality of Legendre Polynomials is used, These

are
3, (kya) + Ajn h (ka) - Afn (k8) = 0 (A7)
. [k 3. @ a)]! E£E [k h (ka)lt =~ EE“ [k a (k a)]' = 0
B, Hen ¥ a h (ka U0 9, =
(A8)

The magnetic field is derived using the following standard relations:

H = ”i"w“ﬁ VXE; Vxnk = knk ; VXnk = kn(,k

and the expansions of vector spherical waves

Spi(cos'ﬂ)

AL =l '
eln(r’k) ie[sin ) P, (cos 0) &n(kr)j - 1¢[“““”§5m"“” cos ¢ Zn(kr)}
1,3 _ A n(a+l) . ok e

nia oK) = ir[mwigww‘zn(g¢) P (cos @) sin @]
h oP) (cos 6)
A o
+ ‘ie[kr { r oz (kr)} w~m~53~w«m sin 9]

A 1

+ i¢[kr T 8r {r % (kr)} P (coé 6) cos ¢J




These expressions, together with equation (A6), lead to

k : k
4 s X A t s .

g; jn(kga))+ By o hn(ka) ~ By, §;~ Jn(ksa) = 0 (A9)

-2 [k, 3 (k8] fzﬁ [ka h_(ka)]' - ﬁiﬂ [k )]' = 0 (AlO

by ~ 47 Tnt * m @y g 5% Jn(kg? T (A10)

Solving equations (A7) - (Al10) we get

_— by 3, @ ONG 3 D] -y 3 0 DING 5 DT

tn T4 - (A11)
L oph BOINEJ OB - p g @OIE E)])

2 . ' 2 | '
B . b pNp 3 W OINE 5 (VD] -y N5 N BN, E S (D))

£ B .
» KNy M Nj I BE n &Y' - h (0[N § sn(Nsébl'

(A12)

& b ph (N8 3 01" =y 3, 0,08 n ()] 215
B ph (OINS L5 LD - g 3 (WD (O]

b Ml WNE 3 ORDIE L (017 ~ by b (OIN, &3 (0] o
. : ‘ ' v
A T LD ] - v BN 5 (D] ,

The notation used is defined by

Now if we gtart with an incident field

ik, %
B = e

we can carry on the analysis exactly as above except that we now have the

relation:
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It is easily seen that if the expansion coefficlents are Cfﬁ, Dfn, C;n’ D}n
&

in this case, then they will be given by equaﬁians similar to (All)~(Al4) ¥
except that the p's are replaced by ¢'s. 'Thus we can write thesge coefficloents E? g
as follows: é
B
B 8 t .t !
an = Ay (u—se) ; 'Cﬂn = Ain (u—s €) ;
| (A15) Eg :
8 & t t %
Qﬂn = Bfn (Ms—>6) 3 Dﬁn = Bﬂn ﬂlgaé) ii §
b
However, since é
¢
2 2 2 2 2 3 ]
Ko o=w pe , kg o= owopg € kg = w py € |

we see that

oo lele oL i
s pe L7 ue

Using these relations, the following relationship between coefficients

is easily established:

Mg

8 4 8
C'e 1 - lNﬁ v B»e n :
;
i
5 8 é
Dy = N o Ay ;
(ALG) :
t by Ny t :
Con = TN Bon ;
n Mg Ty k
pt ﬁﬁufﬁ N E
in N In "
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